Refine
Year of publication
Language
- English (154)
Has Fulltext
- yes (154)
Is part of the Bibliography
- no (154)
Keywords
- Heavy-ion collisions (4)
- Diffraction (3)
- Elastic scattering (3)
- Beam Energy Scan (2)
- Chiral Magnetic Effect (2)
- Collectivity (2)
- Correlation (2)
- Polarization (2)
- RHIC (2)
- STAR (2)
Institute
We report cumulants of the proton multiplicity distribution from dedicated fixed-target Au+Au collisions at 3.0 GeV, measured by the STAR experiment in the kinematic acceptance of rapidity (y) and transverse momentum (pT) within −0.5<y<0 and 0.4<pT<2.0 GeV/c. In the most central 0--5\% collisions, a proton cumulant ratio is measured to be C4/C2=−0.85±0.09 (stat.)±0.82 (syst.), which is less than unity, the Poisson baseline. The hadronic transport UrQMD model reproduces our C4/C2 in the measured acceptance. Compared to higher energy results and the transport model calculations, the suppression in C4/C2 is consistent with fluctuations driven by baryon number conservation and indicates an energy regime dominated by hadronic interactions. These data imply that the QCD critical region, if created in heavy-ion collisions, could only exist at energies higher than 3\,GeV.
We report cumulants of the proton multiplicity distribution from dedicated fixed-target Au+Au collisions at 3.0 GeV, measured by the STAR experiment in the kinematic acceptance of rapidity (y) and transverse momentum (pT) within −0.5<y<0 and 0.4<pT<2.0 GeV/c. In the most central 0--5\% collisions, a proton cumulant ratio is measured to be C4/C2=−0.85±0.09 (stat.)±0.82 (syst.), which is less than unity, the Poisson baseline. The hadronic transport UrQMD model reproduces our C4/C2 in the measured acceptance. Compared to higher energy results and the transport model calculations, the suppression in C4/C2 is consistent with fluctuations driven by baryon number conservation and indicates an energy regime dominated by hadronic interactions. These data imply that the QCD critical region, if created in heavy-ion collisions, could only exist at energies higher than 3\,GeV.
We report cumulants of the proton multiplicity distribution from dedicated fixed-target Au+Au collisions at sNN−−−√ = 3.0 GeV, measured by the STAR experiment in the kinematic acceptance of rapidity (y) and transverse momentum (pT) within −0.5<y<0 and 0.4<pT<2.0 GeV/c. In the most central 0--5\% collisions, a proton cumulant ratio is measured to be C4/C2=−0.85±0.09 (stat.)±0.82 (syst.), which is less than unity, the Poisson baseline. The hadronic transport UrQMD model reproduces our C4/C2 in the measured acceptance. Compared to higher energy results and the transport model calculations, the suppression in C4/C2 is consistent with fluctuations driven by baryon number conservation and indicates an energy regime dominated by hadronic interactions. These data imply that the QCD critical region, if created in heavy-ion collisions, could only exist at energies higher than 3\,GeV.
In high-energy heavy-ion collisions, partonic collectivity is evidenced by the constituent quark number scaling of elliptic flow anisotropy for identified hadrons. A breaking of this scaling and dominance of baryonic interactions is found for identified hadron collective flow measurements in √sNN = 3 GeV Au+Au collisions. In this paper, we report measurements of the first- and second-order azimuthal anisotropic parameters, v1 and v2, of light nuclei (d, t, 3He, 4He) produced in √sNN = 3 GeV Au+Au collisions at the STAR experiment. An atomic mass number scaling is found in the measured v1 slopes of light nuclei at mid-rapidity. For the measured v2 magnitude, a strong rapidity dependence is observed. Unlike v2 at higher collision energies, the v2 values at mid-rapidity for all light nuclei are negative and no scaling is observed with the atomic mass number. Calculations by the Jet AA Microscopic Transport Model (JAM), with baryonic mean-field plus nucleon coalescence, are in good agreement with our observations, implying baryonic interactions dominate the collective dynamics in 3 GeV Au+Au collisions at RHIC.
Measurement of cold nuclear matter effects for inclusive J/ψ in p+Au collisions at √sNN = 200 GeV
(2022)
Measurement by the STAR experiment at RHIC of the cold nuclear matter (CNM) effects experienced by inclusive J/ψ at mid-rapidity in 0-100% p+Au collisions at √sNN = 200 GeV is presented. Such effects are quantified utilizing the nuclear modification factor, RpAu, obtained by taking a ratio of J/ψ yield in p+Au collisions to that in p+p collisions scaled by the number of binary nucleon-nucleon collisions. The differential J/ψ yield in both p+p and p+Au collisions is measured through the dimuon decay channel, taking advantage of the trigger capability provided by the Muon Telescope Detector in the RHIC 2015 run. Consequently, the J/ψ RpAu is derived within the transverse momentum (pT) range of 0 to 10 GeV/c. A suppression of approximately 30% is observed for pT < 2 GeV/c, while J/ψ RpAu becomes compatible with unity for pT greater than 3 GeV/c, indicating the J/ψ yield is minimally affected by the CNM effects at high pT. Comparison to a similar measurement from 0-20% central Au+Au collisions reveals that the observed strong J/ψ suppression above 3 GeV/c is mostly due to the hot medium effects, providing strong evidence for the formation of the quark-gluon plasma in these collisions. Several model calculations show qualitative agreement with the measured J/ψ RpAu, while their agreement with the J/ψ yields in p+p and p+Au collisions is worse.
We report on the measurements of directed flow v1 and elliptic flow v2 for hadrons (π±, K ±, K0 S , p, φ, Λ and ) from Au+Au collisions at √sN N = 3 GeV and v2 for (π±, K ±, p and p) at 27 and 54.4 GeV with the STAR experiment. While at the two higher energy midcentral collisions the numberof-constituent-quark (NCQ) scaling holds, at 3 GeV the v2 at midrapidity is negative for all hadrons and the NCQ scaling is absent. In addition, the v1 slopes at midrapidity for almost all observed hadrons are found to be positive, implying dominant repulsive baryonic interactions. The features of negative v2 and positive v1 slope at 3 GeV can be reproduced with a baryonic mean-field in transport model calculations. These results imply that the medium in such collisions is likely characterized by baryonic interactions.
A linearly polarized photon can be quantized from the Lorentz-boosted electromagnetic field of a nucleus traveling at ultrarelativistic speed. When two relativistic heavy nuclei pass one another at a distance of a few nuclear radii, the photon from one nucleus may interact through a virtual quark-antiquark pair with gluons from the other nucleus, forming a short-lived vector meson (e.g., ρ0). In this experiment, the polarization was used in diffractive photoproduction to observe a unique spin interference pattern in the angular distribution of ρ0 → π+π− decays. The observed interference is a result of an overlap of two wave functions at a distance an order of magnitude larger than the ρ0 travel distance within its lifetime. The strong-interaction nuclear radii were extracted from these diffractive interactions and found to be 6.53 ± 0.06 fm (197Au) and 7.29 ± 0.08 fm (238U), larger than the nuclear charge radii. The observable is demonstrated to be sensitive to the nuclear geometry and quantum interference of nonidentical particles. Polarized photon-gluon fusion reveals quantum wave interference of non-identical particles and shape of high-energy nuclei.
Transverse spin transfer to Λ and ¯Λ hyperons in polarized proton-proton collisions at √𝑠=200 GeV
(2018)
The transverse spin transfer from polarized protons to Λ and Λ¯ hyperons is expected to provide sensitivity to the transversity distribution of the nucleon and to the transversely polarized fragmentation functions. We report the first measurement of the transverse spin transfer to Λ and Λ¯ along the polarization direction of the fragmenting quark, DTT, in transversely polarized proton-proton collisions at s√=200GeV with the STAR detector at RHIC. The data correspond to an integrated luminosity of 18pb−1 and cover the pseudorapidity range |η|<1.2 and transverse momenta pT up to 8GeV/c. The dependence on pT and η are presented. The DTT results are found to be comparable with a model prediction, and are also consistent with zero within uncertainties.
In high-energy heavy-ion collisions, partonic collectivity is evidenced by the constituent quark number scaling of elliptic flow anisotropy for identified hadrons. A breaking of this scaling and dominance of baryonic interactions is found for identified hadron collective flow measurements in sNN−−−√ = 3 GeV Au+Au collisions. In this paper, we report measurements of the first- and second-order azimuthal anisotropic parameters, v1 and v2, of light nuclei (d, t, 3He, 4He) produced in sNN−−−√ = 3 GeV Au+Au collisions at the STAR experiment. An atomic mass number scaling is found in the measured v1 slopes of light nuclei at mid-rapidity. For the measured v2 magnitude, a strong rapidity dependence is observed. Unlike v2 at higher collision energies, the v2 values at mid-rapidity for all light nuclei are negative and no scaling is observed with the atomic mass number. Calculations by the Jet AA Microscopic Transport Model (JAM), with baryonic mean-field plus nucleon coalescence, are in good agreement with our observations, implying baryonic interactions dominate the collective dynamics in 3 GeV Au+Au collisions at RHIC.
In high-energy heavy-ion collisions, partonic collectivity is evidenced by the constituent quark number scaling of elliptic flow anisotropy for identified hadrons. A breaking of this scaling and dominance of baryonic interactions is found for identified hadron collective flow measurements in sNN−−−√ = 3 GeV Au+Au collisions. In this paper, we report measurements of the first-order and second-order azimuthal anisotropic parameters, v1 and v2, of light nuclei (d, t, 3He, 4He) produced in sNN−−−√ = 3 GeV Au+Au collisions at the STAR experiment. An atomic mass number scaling is found in the measured v1 slopes of light nuclei at mid-rapidity. For the measured v2 magnitude, a strong rapidity dependence is observed. Unlike v2 at higher collision energies, the v2 values at mid-rapidity for all light nuclei are negative and no scaling is observed with the atomic mass number. Calculations by the Jet AA Microscopic Transport Model (JAM), with baryonic mean-field plus nucleon coalescence, are in good agreement with our observations, implying baryonic interactions dominate the collective dynamics in 3 GeV Au+Au collisions at RHIC.