Refine
Document Type
- Article (2)
Language
- English (2)
Has Fulltext
- yes (2)
Is part of the Bibliography
- no (2)
Keywords
- Na+ transport (1)
- biochemistry (1)
- biophysics (1)
- citrate transport (1)
- crystal structure (1)
- membrane protein (1)
- membrane transport (1)
- secondary transport (1)
- structural biology (1)
Institute
- Biochemie und Chemie (1)
- MPI für Biophysik (1)
- Physik (1)
Mechanism of the electroneutral sodium/proton antiporter PaNhaP from transition-path shooting
(2019)
Na+/H+ antiporters exchange sodium ions and protons on opposite sides of lipid membranes. The electroneutral Na+/H+ antiporter NhaP from archaea Pyrococcus abyssi (PaNhaP) is a functional homolog of the human Na+/H+ exchanger NHE1, which is an important drug target. Here we resolve the Na+ and H+ transport cycle of PaNhaP by transition-path sampling. The resulting molecular dynamics trajectories of repeated ion transport events proceed without bias force, and overcome the enormous time-scale gap between seconds-scale ion exchange and microseconds simulations. The simulations reveal a hydrophobic gate to the extracellular side that opens and closes in response to the transporter domain motion. Weakening the gate by mutagenesis makes the transporter faster, suggesting that the gate balances competing demands of fidelity and efficiency. Transition-path sampling and a committor-based reaction coordinate optimization identify the essential motions and interactions that realize conformational alternation between the two access states in transporter function.
Mechanism of Na+-dependent citrate transport from the structure of an asymmetrical CitS dimer
(2015)
The common human pathogen Salmonella enterica takes up citrate as a nutrient via the sodium symporter SeCitS. Uniquely, our 2.5 Å x-ray structure of the SeCitS dimer shows three different conformations of the active protomer. One protomer is in the outside-facing state. Two are in different inside-facing states. All three states resolve the substrates in their respective binding environments. Together with comprehensive functional studies on reconstituted proteoliposomes, the structures explain the transport mechanism in detail. Our results indicate a six-step process, with a rigid-body 31° rotation of a helix bundle that translocates the bound substrates by 16 Å across the membrane. Similar transport mechanisms may apply to a wide variety of related and unrelated secondary transporters, including important drug targets.