Refine
Language
- English (9)
Has Fulltext
- yes (9)
Is part of the Bibliography
- no (9)
Keywords
- Autism spectrum disorder (2)
- Molecular neuroscience (2)
- Brain anatomy (1)
- Brain asymmetry (1)
- Hemispheric specialization (1)
- Heterogeneity (1)
- Language delay (1)
- Magnetic resonance imaging (1)
- Neurodevelopment (1)
- Neuroimaging (1)
Institute
- Medizin (9)
Adults with autism spectrum disorder (ASD) are frequently prescribed selective serotonin reuptake inhibitors (SSRIs). However, there is limited evidence to support this practice. Therefore, it is crucial to understand the impact of SSRIs on brain function abnormalities in ASD. It has been suggested that some core symptoms in ASD are underpinned by deficits in executive functioning (EF). Hence, we investigated the role of the SSRI citalopram on EF networks in 19 right-handed adult males with ASD and 19 controls who did not differ in gender, age, IQ or handedness. We performed pharmacological functional magnetic resonance imaging to compare brain activity during two EF tasks (of response inhibition and sustained attention) after an acute dose of 20 mg citalopram or placebo using a randomised, double-blind, crossover design. Under placebo condition, individuals with ASD had abnormal brain activation in response inhibition regions, including inferior frontal, precentral and postcentral cortices and cerebellum. During sustained attention, individuals with ASD had abnormal brain activation in middle temporal cortex and (pre)cuneus. After citalopram administration, abnormal brain activation in inferior frontal cortex was ‘normalised’ and most of the other brain functional differences were ‘abolished’. Also, within ASD, the degree of responsivity in inferior frontal and postcentral cortices to SSRI challenge was related to plasma serotonin levels. These findings suggest that citalopram can ‘normalise’ atypical brain activation during EF in ASD. Future trials should investigate whether this shift in the biology of ASD is maintained after prolonged citalopram treatment, and if peripheral measures of serotonin predict treatment response.
22q11.2 Deletion Syndrome (22q11.2DS) is the most common microdeletion in humans, with a heterogenous clinical presentation including medical, behavioural and psychiatric conditions. Previous neuroimaging studies examining the neuroanatomical underpinnings of 22q11.2DS show alterations in cortical volume (CV), cortical thickness (CT) and surface area (SA). The aim of this study was to identify (1) the spatially distributed networks of differences in CT and SA in 22q11.2DS compared to controls, (2) their unique and spatial overlap, as well as (3) their relative contribution to observed differences in CV. Structural MRI scans were obtained from 62 individuals with 22q11.2DS and 57 age-and-gender-matched controls (aged 6–31). Using FreeSurfer, we examined differences in vertex-wise estimates of CV, CT and SA at each vertex, and compared the frequencies of vertices with a unique or overlapping difference for each morphometric feature. Our findings indicate that CT and SA make both common and unique contributions to volumetric differences in 22q11.2DS, and in some areas, their strong opposite effects mask differences in CV. By identifying the neuroanatomic variability in 22q11.2DS, and the separate contributions of CT and SA, we can start exploring the shared and distinct mechanisms that mediate neuropsychiatric symptoms across disorders, e.g. 22q11.2DS-related ASD and/or psychosis/schizophrenia.
Background: Histological evidence suggests that autism spectrum disorder (ASD) is accompanied by a reduced integrity of the grey-white matter boundary. This has also recently been confirmed by a structural neuroimaging study in vivo reporting significantly reduced grey-white matter tissue contrast (GWC) in adult individuals (18–42 years of age) with ASD relative to typically developing (TD) controls. However, it remains unknown whether the neuroanatomical differences in ASD at the grey-white matter boundary are stable across development or are age-dependent.
Methods: Here, we examined differences in the neurodevelopmental trajectories of GWC in a cross-sectional sample of 77 male ASD individuals and 76 typically developing (TD) controls across childhood and early adulthood (from 7 to 25 years).
Results: Using nested model comparisons, we first established that the developmental trajectory of GWC is complex in many regions across the cortex and includes linear and non-linear effects of age. Second, while ASD individuals have significantly reduced GWC overall, these differences are age-dependent and are most prominent during childhood (< 15 years).
Conclusions: Taken together, our findings suggest that differences in GWC in ASD are unlikely to reflect atypical grey matter cytoarchitecture alone, but may also represent other aspects of the cortical architecture such as age-dependent variability in myelin integrity.
Background Reward processing has been proposed to underpin atypical social behavior, a core feature of autism spectrum disorder (ASD). However, previous neuroimaging studies have yielded inconsistent results regarding the specificity of atypicalities for social rewards in ASD. Utilizing a large sample, we aimed to assess altered reward processing in response to reward type (social, monetary) and reward phase (anticipation, delivery) in ASD.
Methods Functional magnetic resonance imaging during social and monetary reward anticipation and delivery was performed in 212 individuals with ASD (7.6-30.5 years) and 181 typically developing (TD) participants (7.6-30.8 years).
Results Across social and monetary reward anticipation, whole-brain analyses (p<0.05, family-wise error-corrected) showed hypoactivation of the right ventral striatum (VS) in ASD. Further, region of interest (ROI) analysis across both reward types yielded hypoactivation in ASD in both the left and right VS. Across delivery of social and monetary reward, hyperactivation of the VS in individuals with ASD did not survive correction for multiple comparisons. Reward type by diagnostic group interactions, and a dimensional analysis of autism trait scores were not significant during anticipation or delivery. Levels of attention-deficit/hyperactivity disorder (ADHD) symptoms did not affect reward processing in ASD.
Conclusions Our results do not support current theories linking atypical social interaction in ASD to specific alterations in processing of social rewards. Instead, they point towards a generalized hypoactivity of VS in ASD during anticipation of both social and monetary rewards. We suggest that this indicates attenuated subjective reward value in ASD independent of social content and ADHD symptoms.
Social-communication (SC) and restricted repetitive behaviors (RRB) are autism diagnostic symptom domains. SC and RRB severity can markedly differ within and between individuals and may be underpinned by different neural circuitry and genetic mechanisms. Modeling SC-RRB balance could help identify how neural circuitry and genetic mechanisms map onto such phenotypic heterogeneity. Here we developed a phenotypic stratification model that makes highly accurate (97-99%) out-of-sample SC=RRB, SC>RRB, and RRB>SC subtype predictions. Applying this model to resting state fMRI data from the EU-AIMS LEAP dataset (n=509), we find that while the phenotypic subtypes share many commonalities in terms of intrinsic functional connectivity, they also show replicable differences within some networks compared to a typically-developing group (TD). Specifically, the somatomotor network is hypoconnected with perisylvian circuitry in SC>RRB and visual association circuitry in SC=RRB. The SC=RRB subtype show hyperconnectivity between medial motor and anterior salience circuitry. Genes that are highly expressed within these networks show a differential enrichment pattern with known autism-associated genes, indicating that such circuits are affected by differing autism-associated genomic mechanisms. These results suggest that SC-RRB imbalance subtypes share many commonalities, but also express subtle differences in functional neural circuitry and the genomic underpinnings behind such circuitry.
Background: Marked sex differences in autism prevalence accentuate the need to understand the role of biological sex-related factors in autism. Efforts to unravel sex differences in the brain organization of autism have, however, been challenged by the limited availability of female data.
Methods: We addressed this gap by using a large sample of males and females with autism and neurotypical (NT) control individuals (ABIDE; Autism: 362 males, 82 females; NT: 409 males, 166 females; 7-18 years). Discovery analyses examined main effects of diagnosis, sex and their interaction across five resting-state fMRI (R-fMRI) metrics (voxel-level Z > 3.1, cluster-level P < 0.01, gaussian random field corrected). Secondary analyses assessed the robustness of the results to different pre-processing approaches and their replicability in two independent samples: the EU-AIMS Longitudinal European Autism Project (LEAP) and the Gender Explorations of Neurogenetics and Development to Advance Autism Research (GENDAAR).
Results: Discovery analyses in ABIDE revealed significant main effects across the intrinsic functional connectivity (iFC) of the posterior cingulate cortex, regional homogeneity and voxel-mirrored homotopic connectivity (VMHC) in several cortical regions, largely converging in the default network midline. Sex-by-diagnosis interactions were confined to the dorsolateral occipital cortex, with reduced VMHC in females with autism. All findings were robust to different pre-processing steps. Replicability in independent samples varied by R-fMRI measures and effects with the targeted sex-by-diagnosis interaction being replicated in the larger of the two replication samples – EU-AIMS LEAP.
Limitations: Given the lack of a priori harmonization among the discovery and replication datasets available to date, sample-related variation remained and may have affected replicability.
Conclusions: Atypical cross-hemispheric interactions are neurobiologically relevant to autism. They likely result from the combination of sex-dependent and sex-independent factors with a differential effect across functional cortical networks. Systematic assessments of the factors contributing to replicability are needed and necessitate coordinated large-scale data collection across studies.
Competing Interest Statement: ADM receives royalties from the publication of the Italian version of the Social Responsiveness Scale Child Version by Organization Speciali, Italy. JKB has been a consultant to, advisory board member of, and a speaker for Takeda/Shire, Medice, Roche, and Servier. He is not an employee of any of these companies and not a stock shareholder of any of these companies. He has no other financial or material support, including expert testimony, patents, or royalties. CFB is director and shareholder in SBGneuro Ltd. TC has received consultancy from Roche and Servier and received book royalties from Guildford Press and Sage. DM has been a consultant to, and advisory board member, for Roche and Servier. He is not an employee of any of these companies, and not a stock shareholder of any of these companies. TB served in an advisory or consultancy role for Lundbeck, Medice, Neurim Pharmaceuticals, Oberberg GmbH, Shire, and Infectopharm. He received conference support or speakers fee by Lilly, Medice, and Shire. He received royalties from Hogrefe, Kohlhammer, CIP Medien, Oxford University Press; the present work is unrelated to these relationships. JT is a consultant to Roche. The remaining authors declare no competing interests.
Background: Autism Spectrum Disorder (henceforth ‘autism’) is a highly heterogeneous neurodevelopmental condition with few effective treatments for core and associated features. To make progress we need to both identify and validate neural markers that help to parse heterogeneity to tailor therapies to specific neurobiological profiles. Atypical hemispheric lateralization is a stable feature across studies in autism, however its potential of lateralization as a neural stratification marker has not been widely examined.
Methods: In order to dissect heterogeneity in lateralization in autism, we used the large EU-AIMS Longitudinal European Autism Project dataset comprising 352 individuals with autism and 233 neurotypical (NT) controls as well as a replication dataset from ABIDE (513 autism, 691 NT) using a promising approach that moves beyond mean-group comparisons. We derived grey matter voxelwise laterality values for each subject and modelled individual deviations from the normative pattern of brain laterality across age using normative modeling.
Results: Results showed that individuals with autism had highly individualized patterns of both extreme right- and leftward deviations, particularly in language-, motor- and visuospatial regions, associated with symptom severity. Language delay (LD) explained most variance in extreme rightward patterns, whereas core autism symptom severity explained most variance in extreme leftward patterns. Follow-up analyses showed that a stepwise pattern emerged with individuals with autism with LD showing more pronounced rightward deviations than autism individuals without LD.
Conclusion: Our analyses corroborate the need for novel (dimensional) approaches to delineate the heterogeneous neuroanatomy in autism, and indicate atypical lateralization may constitute a neurophenotype for clinically meaningful stratification in autism.
Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder that is accompanied by neurodevelopmental differences in regional cortical volume (CV), and a potential layer‐specific pathology. Conventional measures of CV, however, do not indicate how volume is distributed across cortical layers. In a sample of 92 typically developing (TD) controls and 92 adult individuals with ASD (aged 18–52 years), we examined volumetric gradients by quantifying the degree to which CV is weighted from the pial to the white surface of the brain. Overall, the spatial distribution of Frustum Surface Ratio (FSR) followed the gyral and sulcal pattern of the cortex and approximated a bimodal Gaussian distribution caused by a linear mixture of vertices on gyri and sulci. Measures of FSR were highly correlated with vertex‐wise estimates of mean curvature, sulcal depth, and pial surface area, although none of these features explained more than 76% variability in FSR on their own. Moreover, in ASD, we observed a pattern of predominant increases in the degree of FSR relative to TD controls, with an atypical neurodevelopmental trajectory. Our findings suggest a more outward‐weighted gradient of CV in ASD, which may indicate a larger contribution of supragranular layers to regional differences in CV.
Background: Autism spectrum disorder (“autism”) is a highly heterogeneous neurodevelopmental condition with few effective treatments for core and associated features. To make progress we need to both identify and validate neural markers that help to parse heterogeneity to tailor therapies to specific neurobiological profiles. Atypical hemispheric lateralization is a stable feature across studies in autism, but its potential as a neural stratification marker has not been widely examined. Methods: In order to dissect heterogeneity in lateralization in autism, we used the large EU-AIMS (European Autism Interventions—A Multicentre Study for Developing New Medications) Longitudinal European Autism Project dataset comprising 352 individuals with autism and 233 neurotypical control subjects as well as a replication dataset from ABIDE (Autism Brain Imaging Data Exchange) (513 individuals with autism, 691 neurotypical subjects) using a promising approach that moves beyond mean group comparisons. We derived gray matter voxelwise laterality values for each subject and modeled individual deviations from the normative pattern of brain laterality across age using normative modeling. Results: Individuals with autism had highly individualized patterns of both extreme right- and leftward deviations, particularly in language, motor, and visuospatial regions, associated with symptom severity. Language delay explained most variance in extreme rightward patterns, whereas core autism symptom severity explained most variance in extreme leftward patterns. Follow-up analyses showed that a stepwise pattern emerged, with individuals with autism with language delay showing more pronounced rightward deviations than individuals with autism without language delay. Conclusions: Our analyses corroborate the need for novel (dimensional) approaches to delineate the heterogeneous neuroanatomy in autism and indicate that atypical lateralization may constitute a neurophenotype for clinically meaningful stratification in autism.