Refine
Document Type
- Article (4)
- Doctoral Thesis (1)
Has Fulltext
- yes (5)
Is part of the Bibliography
- no (5)
Keywords
- Acetogen (1)
- Acetogenesis (1)
- Bioengineering (1)
- Butyrate (1)
- Carbon cycling (1)
- Eubacterium (1)
- Na+ transport (1)
- Wood-Ljungdahl pathway (1)
- acetogen (1)
- bioenergetics (1)
Institute
A1AO ATP synthases with a V-type c subunit have only been found in hyperthermophilic archaea which makes bioenergetic analyses impossible due to the instability of liposomes at high temperatures. A search for a potential archaeal A1AO ATP synthase with a V-type c subunit in a mesophilic organism revealed an A1AO ATP synthase cluster in the anaerobic, acetogenic bacterium Eubacterium limosum KIST612. The enzyme was purified to apparent homogeneity from cells grown on methanol to a specific activity of 1.2 U·mg−1 with a yield of 12%. The enzyme contained subunits A, B, C, D, E, F, H, a, and c. Subunit c is predicted to be a typical V-type c subunit with only one ion (Na+)-binding site. Indeed, ATP hydrolysis was strictly Na+-dependent. N,N′-dicyclohexylcarbodiimide (DCCD) inhibited ATP hydrolysis, but inhibition was relieved by addition of Na+. Na+ was shown directly to abolish binding of the fluorescence DCCD derivative, NCD-4, to subunit c, demonstrating a competition of Na+ and DCCD/NCD-4 for a common binding site. After incorporation of the A1AO ATP synthase into liposomes, ATP-dependent primary transport of 22Na+ as well as ΔµNa+-driven ATP synthesis could be demonstrated. The Na+ A1AO ATP synthase from E. limosum is the first ATP synthase with a V-type c subunit from a mesophilic organism. This will enable future bioenergetic analysis of these unique ATP synthases.
Biosynthesis of butyrate from methanol and carbon monoxide by recombinant Acetobacterium woodii
(2022)
Methanol is one of the most widely produced organic substrates from syngas and can serve as a bio-feedstock to cultivate acetogenic bacteria which allows a major contribution to reducing greenhouse gas. Acetobacterium woodii is one of the very few acetogens that can utilize methanol to produce acetate as sole product. Since A. woodii is genetically tractable, it is an interesting candidate to introduce recombinant pathways for production of bio-commodities from methanol. In this study, we introduced the butyrate production operon from a related acetogen, Eubacterium callanderi KIST612, into A. woodii and show a stable production of butyrate from methanol. This study also reveals how butyrate production by recombinant A. woodii strains can be enhanced with addition of electrons in the form of carbon monoxide. Our results not only show a stable expression system of non-native enzymes in A. woodii but also increase in the product spectrum of A. woodii to compounds with higher economic value.
Acetogenic bacteria such as Acetobacterium woodii use the Wood–Ljungdahl pathway (WLP) for fixation of CO2 and energy conservation. This pathway enables conversion of diverse substrates to the main product of acetogenesis, acetate. Methyl group containing substrates such as methanol or methylated compounds, derived from pectin, are abundant in the environment and a source for CO2. Methyl groups enter the WLP at the level of methyltetrahydrofolic acid (methyl-THF). For methyl transfer from methanol to THF a substrate-specific methyltransferase system is required. In this study, we used genetic methods to identify mtaBC2A (Awo_c22760-Awo_c22740) as the methanol-specific methyltransferase system of A. woodii. After methyl transfer, methyl-THF serves as carbon and/or electron source and the respiratory Rnf complex is required for redox homeostasis if methanol + CO2 is the substrate. Resting cells fed with methanol + CO2, indeed converted methanol to acetate in a 4:3 stoichiometry. When methanol was fed in combination with other electron sources such as H2 + CO2 or CO, methanol was converted Rnf-independently and the methyl group was condensed with CO to build acetate. When fed in combination with alternative electron sinks such as caffeate methanol was oxidized only and resulting electrons were used for non-acetogenic growth. These different pathways for the conversion of methyl-group containing substrates enable acetogens to adapt to various ecological niches and to syntrophic communities.
1. Das Wachstum und die Fähigkeit zur Butyratproduktion von E. callanderi KIST612 wurde in geschlossenen Batch-Kulturen mit den Substraten Glukose, Methanol, Formiat, H2 + CO2 und CO untersucht. E. callanderi KIST612 zeigte sich nur bei Wachstum auf 20 mM Glukose oder 20 mM Methanol in der Lage, Butyrat in größeren Mengen (3,7 – 4,3 mM) zu produzieren. Das Hauptprodukt bei allen untersuchten Wachstumssubstraten war jedoch Acetat.
2. In bioinformatischen Analysen des Genoms von E. callanderi KIST612 konnte nur eine A1AO-ATP-Synthase gefunden werden, welche eine V-typ c-Untereinheit bestehend aus 4 TMH‘s mit nur einer Na+-Bindestelle aufweist. Diese konnte aus gewaschenen Membranen von E. callanderi durch Saccharose-Dichtegradientenzentrifugation, Anionenaustausch-Chromatographie (DEAE) sowie einer Größenausschluss-Chromatographie (Superose 6) bis zur apparenten Homogenität gereinigt werden. Nach Produktion einzelner Untereinheiten (A, B, C, D, E, F und H) in E. coli und Generierung von Antikörpern, konnten alle Untereinheiten (A, B, C, D, E, F, H, a sowie c) in der gereinigten Enzympräparation immunologisch oder mittels „Peptide-Mass-Fingerprinting“ nachgewiesen werden. Es konnte somit erstmals eine A1AO-ATP-Synthase aus einem mesophilen Organismus ohne Verlust von Untereinheiten gereinigt werden.
3. Der Gesamtkomplex wies unter nativen Bedingungen eine molekulare Masse von ca. 670 kDa auf. In elektronenmikroskopischen Aufnahmen zeigte sich anhand der hantelförmigen Strukturen, dass die A1AO-ATP-Synthase als intakter Gesamtkomplex gereinigt werden konnte.
4. Die gereinigte A1AO-ATP-Synthase wurde zunächst anhand ihrer ATP-Hydrolyse-Aktivität biochemisch charakterisiert. Die ATP-Hydrolyse-Aktivität hatte ein pH-Optimum von 7 – 7,5 und ein Temperaturoptimum bei 37 °C. Durch Messung der ATPase-Aktivität in Abhängigkeit von verschiedenen Mengen an Na+ konnte die vorhergesagte Na+-Abhängigkeit des Enzyms nachgewiesen werden. Zudem zeigten Hemmstoffexperimente mit DCCD, dass dieser Inhibitor mit Na+ um die gemeinsame Bindestelle in der c-Untereinheit konkurriert. Dies bestätigte nochmals, dass das Enzym funktionell gekoppelt gereinigt werden konnte.
5. Zur weiteren Untersuchung der Ionenspezifität wurde der an die ATP-Hydrolyse gekoppelte Ionentransport durch Rekonstitution des Enzyms in Liposomen und anschließender Messung des Na+- oder H+-Transports gemessen. In den Proteoliposomen konnte mit Hilfe von 22Na+ gezeigt werden, dass das Enzym Natriumionen translozieren kann. Während in Anwesenheit des Natriumionophors ETH 2120 kein 22Na+-Transport beobachtet werden konnte, führte die Anwesenheit des Protonophors TCS zu einer geringfügigen Stimulation der 22Na+-Translokation. Insgesamt konnte ein primärer Na+-Transport nachgewiesen werden, welcher von der A1AO-ATP-Synthase aus E. callanderi katalysiert wird.
6. Durch Rekonstitution der A1AO-ATP-Synthase aus E. callanderi in Liposomen konnte erstmals biochemisch nachgewiesen werden, dass ein solches Enzym trotz seiner V-Typ c-Untereinheit in der Lage ist, ATP zu synthetisieren. Durch die Zugabe von Ionophoren (ETH 2120 und TCS) konnte der elektrochemische Ionengradient aufgehoben werden, wodurch keine ATP-Synthese beobachtet werden konnte. Der erstmalige Nachweis der ATP-Synthese wurde bei einem ΔµNa+ von 270 mV erbracht.
7. Die ATP-Synthese zeigte sich ebenfalls abhängig von der Na+-Konzentration. Der KM-Wert lag bei 1,1 ± 0,4 mM und war vergleichbar mit dem für die ATP-Hydrolyse ermittelten Wert. Ebenso konnte für die ATP-Synthese-Richtung gezeigt werden, dass DCCD mit Na+ um die gemeinsame Bindestelle in der c-Untereinheit konkurriert.
8. Um den biochemischen Nachweis zu erbringen, dass die A1AO-ATP-Synthase auch unter physiologisch relevanten Potentialen zur ATP-Synthese befähigt ist, wurde der energetische Schwellenwert der ATP-Synthese bestimmt. Dieser betrug 87 mV als Triebkraft für ΔpNa, 94 mV als Triebkraft für Δψ und 90 mV als Triebkraft für ΔµNa+. Erstaunlicherweise konnte die ATP-Synthese der A1AO-ATP-Synthase aus E. callanderi KIST612 sowohl durch Δψ als auch ΔpNa angetrieben werden. Unterschiedliche Kombinationen von Δψ und ΔpNa führten zu dem gleichen energetischen Schwellenwert; Δψ und ΔpNa waren im Enzym aus E. callanderi KIST612 äquivalente Triebkräfte.
9. Der energetische Schwellenwert der A1AO-ATP-Synthase aus E. callanderi KIST612 wurde mit dem der F1FO-ATP-Synthasen aus A. woodii, E. coli und P. modestum verglichen. Dazu wurden die Enzyme im ATP-Synthase-defizienten E. coli-Stamm DK8 produziert und anschließend durch Ni2+-NTA-Affinitätschromatographie gereinigt. Nach Einbau der Enzyme in Liposomen waren alle Enzyme in der Lage, ATP als Reaktion auf ΔµNa+ (A. woodii und P. modestum) oder ΔµH+ (E. coli) zu synthetisieren. Im Vergleich zum Enzym aus E. callanderi zeigten sich zwei auffällige Unterschiede. Erstens war keine der F1FO-ATP-Synthasen in der Lage, ΔpNa/ΔpH als alleinige Triebkraft zu nutzen. Während die ATP-Synthese in den Enzymen aus E. coli und P. modestum nur durch ΔµH+ bzw. ΔµNa+ angetrieben werden konnte, konnte das Enzym aus A. woodii zusätzlich auch durch Δψ als einzige Triebkraft angetrieben werden.
...
Butyrate production in the acetogen Eubacterium limosum is dependent on the carbon and energy source
(2021)
Eubacterium limosum KIST612 is one of the few acetogenic bacteria that has the genes encoding for butyrate synthesis from acetyl-CoA, and indeed, E. limosum KIST612 is known to produce butyrate from CO but not from H2 + CO2. Butyrate production from CO was only seen in bioreactors with cell recycling or in batch cultures with addition of acetate. Here, we present detailed study on growth of E. limosum KIST612 on different carbon and energy sources with the goal, to find other substrates that lead to butyrate formation. Batch fermentations in serum bottles revealed that acetate was the major product under all conditions investigated. Butyrate formation from the C1 compounds carbon dioxide and hydrogen, carbon monoxide or formate was not observed. However, growth on glucose led to butyrate formation, but only in the stationary growth phase. A maximum of 4.3 mM butyrate was observed, corresponding to a butyrate:glucose ratio of 0.21:1 and a butyrate:acetate ratio of 0.14:1. Interestingly, growth on the C1 substrate methanol also led to butyrate formation in the stationary growth phase with a butyrate:methanol ratio of 0.17:1 and a butyrate:acetate ratio of 0.33:1. Since methanol can be produced chemically from carbon dioxide, this offers the possibility for a combined chemical-biochemical production of butyrate from H2 + CO2 using this acetogenic biocatalyst. With the advent of genetic methods in acetogens, butanol production from methanol maybe possible as well.