Refine
Document Type
- Article (37)
Language
- English (37)
Has Fulltext
- yes (37)
Is part of the Bibliography
- no (37)
Keywords
- radical prostatectomy (9)
- prostate cancer (7)
- bladder cancer (4)
- Prostate cancer (3)
- chemotherapy (3)
- metastatic prostate cancer (3)
- mortality (3)
- primary prostate cancer (3)
- survival (3)
- Adenocarcinoma (2)
Institute
- Medizin (37)
Objective: We aimed to assess the correlation between serum prostate-specific antigen (PSA) and tumor burden in prostate cancer (PCa) patients undergoing radical prostatectomy (RP), because estimation of tumor burden is of high value, e.g., in men undergoing RP or with biochemical recurrence after RP. Patients and Methods: From January 2019 to June 2020, 179 consecutive PCa patients after RP with information on tumor and prostate weight were retrospectively identified from our prospective institutional RP database. Patients with preoperative systemic therapy (n=19), metastases (cM1, n=5), and locally progressed PCa (pT4 or pN1, n=50) were excluded from analyses. Histopathological features, including total weight of the prostate and specific tumor weight, were recorded by specialized uro-pathologists. Linear regression models were performed to evaluate the effect of PSA on tumor burden, measured by tumor weight after adjustment for patient and tumor characteristics. Results: Overall, median preoperative PSA was 7.0 ng/ml (interquartile range [IQR]: 5.41–10) and median age at surgery was 66 years (IQR: 61-71). Median prostate weight was 34 g (IQR: 26–46) and median tumor weight was 3.7 g (IQR: 1.8–7.1), respectively. In multivariable linear regression analysis after adjustment for patients and tumor characteristics, a significant, positive correlation could be detected between preoperative PSA and tumor weight (coefficient [coef.]: 0.37, CI: 0.15–0.6, p=0.001), indicating a robust increase in PSA of almost 0.4 ng/ml per 1g tumor weight. Conclusion: Preoperative PSA was significantly correlated with tumor weight in PCa patients undergoing RP, with an increase in PSA of almost 0.4 ng/ml per 1 g tumor weight. This might help to estimate both tumor burden before undergoing RP and in case of biochemical recurrence.
Non-organ confined stage and upgrading rates in exclusive PSA high-risk prostate cancer patients
(2022)
Background: The pathological stage of prostate cancer with high-risk prostate-specific antigen (PSA) levels, but otherwise favorable and/or intermediate risk characteristics (clinical T-stage, Gleason Grade group at biopsy [B-GGG]) is unknown. We hypothesized that a considerable proportion of such patients will exhibit clinically meaningful GGG upgrading or non-organ confined (NOC) stage at radical prostatectomy (RP).
Materials and methods: Within the Surveillance, Epidemiology, and End Results database (2010–2015) we identified RP-patients with cT1c-stage and B-GGG1, B-GGG2, or B-GGG3 and PSA 20–50 ng/ml. Rates of GGG4 or GGG5 and/or rates of NOC stage (≥ pT3 and/or pN1) were analyzed. Subsequently, separate univariable and multivariable logistic regression models tested for predictors of NOC stage and upgrading at RP.
Results: Of 486 assessable patients, 134 (28%) exhibited B-GGG1, 209 (43%) B-GGG2, and 143 (29%) B-GGG3, respectively. The overall upgrading and NOC rates were 11% and 51% for a combined rate of upgrading and/or NOC stage of 53%. In multivariable logistic regression models predicting upgrading, only B-GGG3 was an independent predictor (odds ratio [OR]: 5.29; 95% confidence interval [CI]: 2.21–14.19; p < 0.001). Conversely, 33%–66% (OR: 2.36; 95% CI: 1.42–3.95; p = 0.001) and >66% of positive biopsy cores (OR: 4.85; 95% CI: 2.84–8.42; p < 0.001), as well as B-GGG2 and B-GGG3 were independent predictors for NOC stage (all p ≤ 0.001).
Conclusions: In cT1c-stage patients with high-risk PSA baseline, but low- to intermediate risk B-GGG, the rate of upgrading to GGG4 or GGG5 is low (11%). However, NOC stage is found in the majority (51%) and can be independently predicted with percentage of positive cores at biopsy and B-GGG.
Background: To test the value of immunohistochemistry (IHC) staining in prostate biopsies for changes in biopsy results and its impact on treatment decision-making. Methods: Between January 2017–June 2020, all patients undergoing prostate biopsies were identified and evaluated regarding additional IHC staining for diagnostic purpose. Final pathologic results after radical prostatectomy (RP) were analyzed regarding the effect of IHC at biopsy. Results: Of 606 biopsies, 350 (58.7%) received additional IHC staining. Of those, prostate cancer (PCa) was found in 208 patients (59.4%); while in 142 patients (40.6%), PCa could be ruled out through IHC. IHC patients harbored significantly more often Gleason 6 in biopsy (p < 0.01) and less suspicious baseline characteristics than patients without IHC. Of 185 patients with positive IHC and PCa detection, IHC led to a change in biopsy results in 81 (43.8%) patients. Of these patients with changes in biopsy results due to IHC, 42 (51.9%) underwent RP with 59.5% harboring ≥pT3 and/or Gleason 7–10. Conclusions: Patients with IHC stains had less suspicious characteristics than patients without IHC. Moreover, in patients with positive IHC and PCa detection, a change in biopsy results was observed in >40%. Patients with changes in biopsy results partly underwent RP, in which 60% harbored significant PCa.
Background: The impact of MRI-lesion targeted (TB) and systematic biopsy (SB) Gleason score (GS) as a predictor for final pathological GS still remains unclear. Methods: All patients with TB + SB, and subsequent radical prostatectomy (RP) between 01/2014-12/2020 were analyzed. Rank correlation coefficient predicted concordance with pathological GS for patients’ TB and SB GS, as well as for the combined effect of SB + TB. Results: Of 159 eligible patients, 77% were biopsy naïve. For SB taken in addition to TB, a Spearman’s correlation of +0.33 was observed regarding final GS. Rates of concordance, upgrading, and downgrading were 37.1, 37.1 and 25.8%, respectively. For TB, a +0.52 correlation was computed regarding final GS. Rates of concordance, upgrading and downgrading for TB biopsy GS were 45.9, 33.3, and 20.8%, respectively. For the combination of SB + TB, a correlation of +0.59 was observed. Rates of concordance, upgrading and downgrading were 49.7, 15.1 and 35.2%, respectively. The combined effect of SB + TB resulted in a lower upgrading rate, relative to TB and SB (both p < 0.001), but a higher downgrading rate, relative to TB (p < 0.01). Conclusions: GS obtained from TB provided higher concordance and lower upgrading and downgrading rates, relative to SB GS with regard to final pathology. The combined effect of SB + TB led to the highest concordance rate and the lowest upgrading rate.
Objective: Relative to urban populations, rural patients may have more limited access to care, which may undermine timely bladder cancer (BCa) diagnosis and even survival.
Methods: We tested the effect of residency status (rural areas [RA < 2500 inhabitants] vs. urban clusters [UC ≥ 2500 inhabitants] vs. urbanized areas [UA, ≥50,000 inhabitants]) on BCa stage at presentation, as well as on cancer-specific mortality (CSM) and other cause mortality (OCM), according to the US Census Bureau definition. Multivariate competing risks regression (CRR) models were fitted after matching of RA or UC with UA in stage-stratified analyses.
Results: Of 222,330 patients, 3496 (1.6%) resided in RA, 25,462 (11.5%) in UC and 193,372 (87%) in UA. Age, tumor stage, radical cystectomy rates or chemotherapy use were comparable between RA, UC and UA (all p > 0.05). At 10 years, RA was associated with highest OCM followed by UC and UA (30.9% vs. 27.7% vs. 25.6%, p < 0.01). Similarly, CSM was also marginally higher in RA or UC vs. UA (20.0% vs. 20.1% vs. 18.8%, p = 0.01). In stage-stratified, fully matched CRR analyses, increased OCM and CSM only applied to stage T1 BCa patients.
Conclusion: We did not observe meaningful differences in access to treatment or stage distribution, according to residency status. However, RA and to a lesser extent UC residency status, were associated with higher OCM and marginally higher CSM in T1N0M0 patients. This observation should be further validated or refuted in additional epidemiological investigations.
Background: This study aims to test the effect of the 10 most common nonurological primary cancers (skin, rectal, colon, lymphoma, leukemia, pancreas, stomach, esophagus, liver, lung) on overall mortality (OM) after secondary prostate cancer (PCa). Material and Methods: Within the Surveillance, Epidemiology, and End Results (SEER) database, patients with 10 most common primary cancers and concomitant secondary PCa (diagnosed 2004–2016) were identified and were matched in 1:4 fashion (age, year at diagnosis, race/ethnicity, treatment type, TNM stage) with primary PCa controls. OM was compared between secondary and primary PCa patients and was stratified according to primary cancer type, as well as according to time interval between primary cancer vs. secondary PCa diagnoses. Results: We identified 24,848 secondary PCa patients (skin, n = 3,871; rectal, n = 798; colon, n = 3,665; lymphoma, n = 2,583; leukemia, n = 1,102; pancreatic, n = 118; stomach, n = 361; esophagus, n = 219; liver, n = 160; lung, n = 1,328) vs. 531,732 primary PCa patients. Secondary PCa characteristics were less favorable than those of primary PCa patients (PSA and grade), and smaller proportions of secondary PCa patients received active treatment. After 1:4 matching, all secondary PCa exhibited worse OM than primary PCa patients. Finally, subgroup analyses showed that the survival disadvantage of secondary PCa patients decreased with longer time interval since primary cancer diagnosis and subsequent secondary PCa. Conclusion: Patients with secondary PCa are diagnosed with less favorable PSA and grade. Even after matching for PCa characteristics, secondary PCa patients still exhibit worse survival. However, the survival disadvantage is attenuated, when secondary PCa diagnosis is made after longer time interval, since primary cancer diagnosis.
Background: To test the effect of urological primary cancers (bladder, kidney, testis, upper tract, penile, urethral) on overall mortality (OM) after secondary prostate cancer (PCa). Methods: Within the Surveillance, Epidemiology and End Results (SEER) database, patients with urological primary cancers and concomitant secondary PCa (diagnosed 2004-2016) were identified and were matched in 1:4 fashion with primary PCa controls. OM was compared between secondary and primary PCa patients and stratified according to primary urological cancer type, as well as to time interval between primary urological cancer versus secondary PCa diagnoses. Results: We identified 5,987 patients with primary urological and secondary PCa (bladder, n = 3,287; kidney, n = 2,127; testis, n = 391; upper tract, n = 125; penile, n = 47; urethral, n = 10) versus 531,732 primary PCa patients. Except for small proportions of Gleason grade group and age at diagnosis, PCa characteristics between secondary and primary PCa were comparable. Conversely, proportions of secondary PCa patients which received radical prostatectomy were smaller (29.0 vs. 33.5%), while no local treatment rates were higher (34.2 vs. 26.3%). After 1:4 matching, secondary PCa patients exhibited worse OM than primary PCa patients, except for primary testis cancer. Here, no OM differences were recorded. Finally, subgroup analyses showed that the survival disadvantage of secondary PCa patients decreased with longer time interval since primary cancer diagnosis. Conclusions: After detailed matching for PCa characteristics, secondary PCa patients exhibit worse survival, except for testis cancer patients. The survival disadvantage is attenuated, when secondary PCa diagnosis is made after longer time interval, since primary urological cancer diagnosis.
Purpose: To test the effect of anatomic variants of the prostatic apex overlapping the membranous urethra (Lee type classification), as well as median urethral sphincter length (USL) in preoperative multiparametric magnetic resonance imaging (mpMRI) on the very early continence in open (ORP) and robotic-assisted radical prostatectomy (RARP) patients. Methods: In 128 consecutive patients (01/2018–12/2019), USL and the prostatic apex classified according to Lee types A–D in mpMRI prior to ORP or RARP were retrospectively analyzed. Uni- and multivariable logistic regression models were used to identify anatomic characteristics for very early continence rates, defined as urine loss of ≤ 1 g in the PAD-test. Results: Of 128 patients with mpMRI prior to surgery, 76 (59.4%) underwent RARP vs. 52 (40.6%) ORP. In total, median USL was 15, 15 and 10 mm in the sagittal, coronal and axial dimensions. After stratification according to very early continence in the PAD-test (≤ 1 g vs. > 1 g), continent patients had significantly more frequently Lee type D (71.4 vs. 54.4%) and C (14.3 vs. 7.6%, p = 0.03). In multivariable logistic regression models, the sagittal median USL (odds ratio [OR] 1.03) and Lee type C (OR: 7.0) and D (OR: 4.9) were independent predictors for achieving very early continence in the PAD-test. Conclusion: Patients’ individual anatomical characteristics in mpMRI prior to radical prostatectomy can be used to predict very early continence. Lee type C and D suggest being the most favorable anatomical characteristics. Moreover, longer sagittal median USL in mpMRI seems to improve very early continence rates.
Background: Number of positive prostate biopsy cores represents a key determinant between high versus very high-risk prostate cancer (PCa). We performed a critical appraisal of the association between the number of positive prostate biopsy cores and CSM in high versus very high-risk PCa. Methods: Within Surveillance, Epidemiology, and End Results database (2010–2016), 13,836 high versus 20,359 very high-risk PCa patients were identified. Discrimination according to 11 different positive prostate biopsy core cut-offs (≥2–≥12) were tested in Kaplan–Meier, cumulative incidence, and multivariable Cox and competing risks regression models. Results: Among 11 tested positive prostate biopsy core cut-offs, more than or equal to 8 (high-risk vs. very high-risk: n = 18,986 vs. n = 15,209, median prostate-specific antigen [PSA]: 10.6 vs. 16.8 ng/ml, <.001) yielded optimal discrimination and was closely followed by the established more than or equal to 5 cut-off (high-risk vs. very high-risk: n = 13,836 vs. n = 20,359, median PSA: 16.5 vs. 11.1 ng/ml, p < .001). Stratification according to more than or equal to 8 positive prostate biopsy cores resulted in CSM rates of 4.1 versus 14.2% (delta: 10.1%, multivariable hazard ratio: 2.2, p < .001) and stratification according to more than or equal to 5 positive prostate biopsy cores with CSM rates of 3.7 versus 11.9% (delta: 8.2%, multivariable hazard ratio: 2.0, p < .001) in respectively high versus very high-risk PCa. Conclusions: The more than or equal to 8 positive prostate biopsy cores cutoff yielded optimal results. It was very closely followed by more than or equal to 5 positive prostate biopsy cores. In consequence, virtually the same endorsement may be made for either cutoff. However, more than or equal to 5 positive prostate biopsy cores cutoff, based on its existing wide implementation, might represent the optimal choice.
Objectives: To test the effect of race/ethnicity on cancer-specific mortality after radical prostatectomy or external beam radiotherapy in localized prostate cancer patients. Methods: In the Surveillance, Epidemiology and End Results database 2004–2016, we identified intermediate-risk and high-risk white (n = 151 632), Asian (n = 11 189), Hispanic/Latino (n = 20 077) and African American (n = 32 550) localized prostate cancer patients, treated with external beam radiotherapy or radical prostatectomy. Race/ethnicity-stratified cancer-specific mortality analyses relied on competing risks regression, after propensity score matching for patient and cancer characteristics. Results: Compared with white patients, Asian intermediate- and high-risk external beam radiotherapy patients showed lower cancer-specific mortality (hazard ratio 0.58 and 0.70, respectively, both P ≤ 0.02). Additionally, Asian high-risk radical prostatectomy patients also showed lower cancer-specific mortality than white patients (hazard ratio 0.72, P = 0.04), but not Asian intermediate-risk radical prostatectomy patients (P = 0.08). Conversely, compared with white patients, African American intermediate-risk radical prostatectomy patients showed higher cancer-specific mortality (hazard ratio 1.36, P = 0.01), but not African American high-risk radical prostatectomy or intermediate- and high-risk external beam radiotherapy patients (all P ≥ 0.2). Finally, compared with white people, no cancer-specific mortality differences were recorded for Hispanic/Latino patients after external beam radiotherapy or radical prostatectomy, in both risk levels (P ≥ 0.2). Conclusions: Relative to white patients, an important cancer-specific mortality advantage applies to intermediate-risk and high-risk Asian prostate cancer patients treated with external beam radiotherapy, and to high-risk Asian patients treated with radical prostatectomy. These observations should be considered in pretreatment risk stratification and decision-making.