Refine
Year of publication
- 2007 (1)
Document Type
- Doctoral Thesis (1)
Language
- English (1)
Has Fulltext
- yes (1)
Is part of the Bibliography
- no (1)
Keywords
- Carrier-Proteine (1)
- Membranproteine (1)
- Nervensystem (1)
- Neurowissenschaften (1)
Institute
A detailed understanding of how potassium channels function is crucial e. g. for the development of drugs, which could lead to novel therapeutic concepts for diseases ranging from diabetes to cardiac abnormalities. An improved understanding of channel structure may allow researchers to design medication that can restore proper function of these channels. This is particularly important for KCNQ channels, since four out of five family members are involved in human inherited disease. In addition to structure and function relationships the determinants which govern assembly of KCNQ subunits are decisive to understand the physiological role of the KCNQ channel family members. Many details of KCNQ channel assembly remain incompletely understood. Previous work has shown that the subunit-specific heteromerisation between KCNQ subunits is determined by a ~115 amino acid-long subunit interaction domain (si) within the C-terminus (Schwake et al., 2003). Recently, Jenke et al. (2003) proposed that the C-terminal domains in eag and erg K+ channels act as sites which drive tetramerization. From their ability to form coiled coils, these domains were referred to as tetramerizing coiled-coil (TCC) sequences. Jenke et al. also pointed out that KCNQ channels contain bipartite TCC motifs within their C-termini, exactly within the si domain, which is responsible for the subunit-specific interaction pattern. The first part of this thesis was dedicated to determine the individual role of these TCC domains on homomeric and heteromeric channel formation in order to further characterize the molecular determinants of KCNQ channel assembly. In the second part of this thesis cystein-scanning mutagenesis was employed, followed by thiol-specific modification using MTS reagents to screen more than 20 residues in the S3-S4 linker region and in the S4 transmembrane domain of the KCNQ1 channel to gain information about residue accessibility, the functional effects of thiol-modifying reagents (MTSES), and effects of crosslinking selected pairs of Cys residues by Cd+ ions, which could be used for testing model predictions based upon known Kv channel structures from the literature. According to homology modelling based on the Kv1.2 structure it was attempted to determine the proximity of individual residues from different transmembrane segments using the metal bridge approach (crosslinking by Cd+ ions). This led us to derive structural constraints for interactions between the S4 voltage sensor and adjacent transmembrane segments of KCNQ1. Similar studies have previously been performed on the Shaker K+ channel, which has served as a paradigm for structure-function research of voltage-gated K+ channels for a long time, but little is known for KCNQ channels concerning their similarity to published K+ channel structures.