Refine
Document Type
- Article (5)
Language
- English (5)
Has Fulltext
- yes (5)
Is part of the Bibliography
- no (5)
Keywords
- cholesterol (2)
- Breast cancer (1)
- LDHB (1)
- Lipid signalling (1)
- RNA therapeutics (1)
- SGPL1 (1)
- Sphingolipids (1)
- arachidonate 15-lipoxygenase (1)
- bile (1)
- ceramides (1)
Institute
Arachidonate 15-lipoxygenase (ALOX15) and arachidonate 15-lipoxygenase, type B (ALOX15B) catalyze the dioxygenation of polyunsaturated fatty acids and are upregulated in human alternatively activated macrophages (AAMs) induced by Th2 cytokine interleukin-4 (IL-4) and/or interleukin-13. Known primarily for roles in bioactive lipid mediator synthesis, 15-lipoxygenases (15-LOXs) have been implicated in various macrophage functions including efferocytosis and ferroptosis. Using a combination of inhibitors and siRNAs to suppress 15-LOX isoforms, we studied the role of 15-LOXs in cellular cholesterol homeostasis and immune function in naïve and AAMs. Silencing or inhibiting the 15-LOX isoforms impaired sterol regulatory element binding protein (SREBP)-2 signaling by inhibiting SREBP-2 processing into mature transcription factor and reduced SREBP-2 binding to sterol regulatory elements and subsequent target gene expression. Silencing ALOX15B reduced cellular cholesterol and the cholesterol intermediates desmosterol, lanosterol, 24,25-dihydrolanosterol, and lathosterol as well as oxysterols in IL-4-stimulated macrophages. In addition, attenuating both 15-LOX isoforms did not generally affect IL-4 gene expression but rather uniquely impacted IL-4-induced CCL17 production in an SREBP-2-dependent manner resulting in reduced T cell migration to macrophage conditioned media. In conclusion, we identified a novel role for ALOX15B, and to a lesser extent ALOX15, in cholesterol homeostasis and CCL17 production in human macrophages.
Sphingosine-1-phosphate (S1P) lyase irreversibly cleaves S1P, thereby catalysing the ultimate step of sphingolipid degradation. We show here that embryonic fibroblasts from S1P lyase-deficient mice (Sgpl1−/−-MEFs), in which S1P and sphingosine accumulate, have features of Niemann-Pick disease type C (NPC) cells. In the presence of serum, overall cholesterol content was elevated in Sgpl1−/−-MEFs, due to upregulation of the LDL receptor and enhanced cholesterol uptake. Despite this, activation of sterol regulatory element-binding protein-2 was increased in Sgpl1−/−-MEFs, indicating a local lack of cholesterol at the ER. Indeed, free cholesterol was retained in NPC1-containing vesicles, which is a hallmark of NPC. Furthermore, upregulation of amyloid precursor protein in Sgpl1−/−-MEFs was mimicked by an NPC1 inhibitor in Sgpl1+/+-MEFs and reduced by overexpression of NPC1. Lysosomal pH was not altered by S1P lyase deficiency, similar to NPC. Interestingly, lysosomal Ca2+ content and bafilomycin A1-induced [Ca2+]i increases were enhanced in Sgpl1−/−-MEFs, contrary to NPC. These results show that both a primary defect in cholesterol trafficking and S1P lyase deficiency cause overlapping phenotypic alterations, and challenge the present view on the role of sphingosine in lysosomal Ca2+ homeostasis.
Sphingosine 1 phosphate (S1P) lyase (Sgpl1) catalyses the irreversible cleavage of S1P and thereby the last step of sphingolipid degradation. Loss of Sgpl1 in humans and mice leads to accumulation of sphingolipids and multiple organ injuries. Here, we addressed the role of hepatocyte Sgpl1 for regulation of sphingolipid homoeostasis by generating mice with hepatocyte-specific deletion of Sgpl1 (Sgpl1HepKO mice). Sgpl1HepKO mice had normal body weight, liver weight, liver structure and liver enzymes both at the age of 8 weeks and 8 months. S1P, sphingosine and ceramides, but not glucosylceramides or sphingomyelin, were elevated by ~1.5–2-fold in liver, and this phenotype did not progress with age. Several ceramides were elevated in plasma, while plasma S1P was normal. Interestingly, S1P and glucosylceramides, but not ceramides, were elevated in bile of Sgpl1HepKO mice. Furthermore, liver cholesterol was elevated, while LDL cholesterol decreased in 8-month-old mice. In agreement, the LDL receptor was upregulated, suggesting enhanced uptake of LDL cholesterol. Expression of peroxisome proliferator-activated receptor-γ, liver X receptor and fatty acid synthase was unaltered. These data show that mouse hepatocytes largely compensate the loss of Sgpl1 by secretion of accumulating sphingolipids in a specific manner into blood and bile, so that they can be excreted or degraded elsewhere.
Background: Glucose metabolism in the tumor-microenvironment is a fundamental hallmark for tumor growth and intervention therein remains an attractive option for anti-tumor therapy. Whether tumor-derived factors such as microRNAs (miRs) regulate glucose metabolism in stromal cells, especially in tumor-associated macrophages (TAMs), to hijack them for trophic support, remains elusive.
Methods: Ago-RIP-Seq identified macrophage lactate dehydrogenase B (LDHB) as a target of tumor-derived miR-375 in both 2D/3D cocultures and in murine TAMs from a xenograft mouse model. The prognostic value was analyzed by ISH and multiplex IHC of breast cancer patient tissues. Functional consequences of the miR-375-LDHB axis in TAMs were investigated upon mimic/antagomir treatment by live metabolic flux assays, GC/MS, qPCR, Western blot, lentiviral knockdown and FACS. The therapeutic potential of a combinatorial miR-375-decoy/simvastatin treatment was validated by live cell imaging.
Results: Macrophage LDHB decreased in murine and human breast carcinoma. LDHB downregulation increase aerobic glycolysis and lactagenesis in TAMs in response to tumor-derived miR-375. Lactagenesis reduced fatty acid synthesis but activated SREBP2, which enhanced cholesterol biosynthesis in macrophages. LDHB downregulation skewed TAMs to function as a lactate and sterol/oxysterol source for the proliferation of tumor cells. Restoring of LDHB expression potentiated inhibitory effects of simvastatin on tumor cell proliferation.
Conclusion: Our findings identified a crucial role of LDHB in macrophages and established tumor-derived miR-375 as a novel regulator of macrophage metabolism in breast cancer, which might pave the way for strategies of combinatorial cancer cell/stroma cell interventions.
Purpose: The antifungal drugs ketoconazole and itraconazole reduce serum concentrations of 4β-hydroxycholesterol, which is a validated marker for hepatic cytochrome P450 (CYP) 3A4 activity. We tested the effect of another antifungal triazole agent, fluconazole, on serum concentrations of different sterols and oxysterols within the cholesterol metabolism to see if this inhibitory reaction is a general side effect of azole antifungal agents.
Methods: In a prospective, double-blind, placebo-controlled, two-way crossover design, we studied 17 healthy subjects (nine men, eight women) who received 400 mg fluconazole or placebo daily for 8 days. On day 1 before treatment and on day 8 after the last dose, fasting blood samples were collected. Serum cholesterol precursors and oxysterols were measured by gas chromatography-mass spectrometry-selected ion monitoring and expressed as the ratio to cholesterol (R_sterol).
Results: Under fluconazole treatment, serum R_lanosterol and R_24,25-dihydrolanosterol increased significantly without affecting serum cholesterol or metabolic downstream markers of hepatic cholesterol synthesis. Serum R_4β-, R_24S-, and R_27-hydroxycholesterol increased significantly.
Conclusion: Fluconazole inhibits the 14α-demethylation of lanosterol and 24,25-dihydrolanosterol, regulated by CYP51A1, without reduction of total cholesterol synthesis. The increased serum level of R_4β-hydroxycholesterol under fluconazole treatment is in contrast to the reductions observed under ketoconazole and itraconazole treatments. The question, whether this increase is caused by induction of CYP3A4 or by inhibition of the catabolism of 4β-hydroxycholesterol, must be answered by mechanistic in vitro and in vivo studies comparing effects of various azole antifungal agents on hepatic CYP3A4 activity.