Refine
Year of publication
Document Type
- Article (45)
- Contribution to a Periodical (4)
- Conference Proceeding (1)
Has Fulltext
- yes (50)
Is part of the Bibliography
- no (50)
Keywords
- 5-lipoxygenase (6)
- inflammation (5)
- leukotriene (3)
- polypharmacology (3)
- Dicer (2)
- PPARγ (2)
- SPM (2)
- eicosanoid (2)
- epigenetics (2)
- lipoxygenase (2)
Institute
5-lipoxygenase (5-LO), the key enzyme in leukotriene biosynthesis, is expressed in a tissue- and cell differentiation-specific manner. The 5-LO core promoter required for basal promoter activity has a unique (G+C)-rich sequence that contains five tandem Sp1 consensus sequences. The mechanisms involved in the regulation of cell type-specific 5-LO expression are unknown. Here we show that 5-LO expression is regulated by DNA methylation. Treatment of the 5-LO-negative cell lines U937 and HL-60TB with the demethylating agent 5-aza-2'-deoxycytidine (AdC) up-regulated expression of 5-LO primary transcripts and mature mRNA in a similar fashion, indicating that AdC stimulates 5-LO gene transcription. Analysis of the methylation status of the 5-LO promoter revealed that the core promoter region was methylated in U937 and HL-60TB cells, whereas it was unmethylated in the 5-LO-positive parent HL-60 cell line. Reporter gene assays with 5-LO promoter constructs gave up to 68- and 655-fold repression of 5-LO promoter activity in HeLa and Mono Mac 6 cells by methylation. 1,25-dihydroxyvitamin D(3) and transforming growth factor-beta (TGFbeta), potent inducers of the 5-LO pathway in myeloid cell lines, increased 5-LO RNA expression in HL-60TB and U937 cells, but co-treatment with AdC was required to achieve 5-LO expression levels in HL-60TB cells that were comparable with wild-type HL-60 cells. In reporter gene assays, 1,25-dihydroxyvitamin D(3) and TGFbeta were unable to induce promoter activity when the 5-LO promoter constructs were methylated, which suggests that 5-LO promoter demethylation is a prerequisite for the high level induction of 5-LO gene expression by 1,25-dihydroxyvitamin D(3) and TGFbeta and that the effects of both agents on 5-LO mRNA expression are not related to DNA methylation.
Lipide sind essentielle Strukturelemente von Zellen. Sie sind unter anderem Hauptbestandteil von Membranen, die einerseits verschiedene Kompartimente innerhalb der Zelle gegeneinander abgrenzen und andererseits die Zelle nach außen abschotten. Membranen regulieren den Transport von Ionen, kleinen polaren Molekülen sowie peptidartigen Botenstoffen, da sie für viele Bestandteile des Organismus nicht oder nur wenig durchlässig (permeabel) sind.
Wie entsteht Schmerz? Und wie kann man ihn lindern? Um diese Fragen beantworten zu können, untersuchen Forscher eine Gruppe von Schlüsselmolekülen, die Eicosanoide, und ihre Abbauprodukte. Dabei machen sie immer wieder überraschende Entdeckungen: Blockiert man etwa durch Schmerzmittel wie Acetylsalicylsäure gezielt die Entstehung des Abbauprodukts Prostaglandin, schützt dies auch vor Krebs. Verhindert man die Entstehung von Leukotrienen, lassen sich allergische Reaktionen wie Asthma, aber auch Krebs, Osteoporose und Herz-Kreislauf-Erkrankungen beeinflussen.
Changes in vitamin D serum levels have been associated with inflammatory diseases, such as inflammatory bowel disease (IBD), rheumatoid arthritis, systemic lupus erythematosus, multiple sclerosis (MS), atherosclerosis, or asthma. Genome- and transcriptome-wide studies indicate that vitamin D signaling modulates many inflammatory responses on several levels. This includes (i) the regulation of the expression of genes which generate pro-inflammatory mediators, such as cyclooxygenases or 5-lipoxygenase, (ii) the interference with transcription factors, such as NF-κB, which regulate the expression of inflammatory genes and (iii) the activation of signaling cascades, such as MAP kinases which mediate inflammatory responses. Vitamin D targets various tissues and cell types, a number of which belong to the immune system, such as monocytes/macrophages, dendritic cells (DCs) as well as B- and T cells, leading to individual responses of each cell type. One hallmark of these specific vitamin D effects is the cell-type specific regulation of genes involved in the regulation of inflammatory processes and the interplay between vitamin D signaling and other signaling cascades involved in inflammation. An important task in the near future will be the elucidation of the regulatory mechanisms that are involved in the regulation of inflammatory responses by vitamin D on the molecular level by the use of techniques such as chromatin immunoprecipitation (ChIP), ChIP-seq, and FAIRE-seq.
Chromosomal translocations - leading to the expression of fusion genes - are well-studied genetic abberrations associated with the development of leukemias. Most of them represent altered transcription factors that affect transcription or epigenetics, while others - like BCR-ABL - are enhancing signaling. BCR-ABL has become the prototype for rational drug design, and drugs like Imatinib and subsequently improved drugs have a great impact on cancer treatments. By contrast, MLL-translocations in acute leukemia patients are hard to treat, display a high relapse rate and the overall survival rate is still very poor. Therefore, new treatment modalities are urgently needed. Based on the molecular insights of the most frequent MLL rearrangements, BET-, DOT1L-, SET- and MEN1/LEDGF-inhibitors have been developed and first clinical studies were initiated. Not all results of these studies have are yet available, however, a first paper reports a failure in the DOT1L-inhibitor study although it was the most promising drug based on literature data. One possible explanation is that all of the above mentioned drugs also target the cognate wildtype proteins. Here, we want to strengthen the fact that efforts should be made to develop drugs or strategies to selectively inhibit only the fusion proteins. Some examples will be given that follow exactly this guideline, and proof-of-concept experiments have already demonstrated their feasibility and effectiveness. Some of the mentioned approaches were using drugs that are already on the market, indicating that there are existing opportunities for the future which should be implemented in future therapy strategies.
We developed the Pharmacophore Alignment Search Tool (PhAST), a text-based technique for rapid hit and lead structure searching in large compound databases. For each molecule, a two-dimensional graph of potential pharmacophoric points (PPPs) is created, which has an identical topology as the original molecule with implicit hydrogen atoms. Each vertex is coloured by a symbol representing the corresponding PPP. The vertices of the graph are canonically labelled. The symbols associated with the vertices are combined to a so-called PhAST-Sequence beginning with the vertex with the lowest canonical label. Due to the canonical labelling the created PhAST-Sequence is characteristic for each molecule. For similarity assessment, PhAST-Sequences are compared using the sequence identity in their global pairwise alignment. The alignment score lies between 0 (no similarity) and 1 (identical PhAST-Sequences). In order to use global pairwise sequence alignment, a score matrix for pharmacophoric symbols was developed and gap penalties were optimized. PhAST performed comparably and sometimes superior to other similarity search tools (CATS2D, MOE pharmacophore quadruples) in retrospective virtual screenings using the COBRA collection of drugs and lead structures. Most importantly, the PhAST alignment technique allows for the computation of significance estimates that help prioritize a virtual hit list.
Designed polypharmacology presents as an attractive strategy to increase therapeutic efficacy in multi-factorial diseases by a directed modulation of multiple involved targets with a single molecule. Such an approach appears particularly suitable in non-alcoholic steatohepatitis (NASH) which involves hepatic steatosis, inflammation and fibrosis as pathological hallmarks. Among various potential pharmacodynamic mechanisms, activation of the farnesoid X receptor (FXRa) and inhibition of leukotriene A4 hydrolase (LTA4Hi) hold promise to counteract NASH according to preclinical and clinical observations. We have developed dual FXR/LTA4H modulators as pharmacological tools, enabling evaluation of this polypharmacology concept to treat NASH and related pathologies. The optimized FXRa/LTA4Hi exhibits well-balanced dual activity on the intended targets with sub-micromolar potency and is highly selective over related nuclear receptors and enzymes rendering it suitable as tool to probe synergies of dual FXR/LTA4H targeting.