Refine
Year of publication
Document Type
- Article (45)
- Conference Proceeding (2)
- Doctoral Thesis (1)
Has Fulltext
- yes (48)
Is part of the Bibliography
- no (48)
Keywords
- BMC (3)
- Bone defect (3)
- Masquelet technique (3)
- polytrauma (3)
- Angiogenesis (2)
- BMNC (2)
- Cell therapy (2)
- Exosomes (2)
- Extracellular vesicles (2)
- SSTI (2)
Institute
Introduction Loss of intestinal integrity has been implicated as an important contributor to the development of excessive inflammation following severe trauma. Thus far, clinical data concerning the occurrence and significance of intestinal damage after trauma remain scarce. This study investigates whether early intestinal epithelial cell damage occurs in trauma patients and, if present, whether such cell injury is related to shock, injury severity and the subsequent inflammatory response. Methods Prospective observational cohort study in 96 adult trauma patients. Upon arrival at the emergency room (ER) plasma levels of intestinal fatty acid binding protein (i-FABP), a specific marker for damage of differentiated enterocytes, were measured. Factors that potentially influence the development of intestinal cell damage after trauma were determined, including the presence of shock and the extent of abdominal trauma and general injury severity. Furthermore, early plasma levels of i-FABP were related to inflammatory markers interleukin-6 (IL-6), procalcitonin (PCT) and C-reactive protein (CRP). Results Upon arrival at the ER, plasma i-FABP levels were increased compared with healthy volunteers, especially in the presence of shock (P < 0.01). The elevation of i-FABP was related to the extent of abdominal trauma as well as general injury severity (P < 0.05). Circulatory i-FABP concentrations at ER correlated positively with IL-6 and PCT levels at the first day (r2 = 0.19; P < 0.01 and r2 = 0.36; P < 0.001 respectively) and CRP concentrations at the second day after trauma (r2 = 0.25; P < 0.01). Conclusions This study reveals early presence of intestinal epithelial cell damage in trauma patients. The extent of intestinal damage is associated with the presence of shock and injury severity. Early intestinal damage precedes and is related to the subsequent developing inflammatory response.
Fragestellung: In einem ausgedehnten Knochendefekt kann das Einwachsen von knochenbildenden Zellen limitiert sein, da ohne Gefässe die Ernährung der regenerativen Zellen im Knochenkonstrukt insuffizient ist. Endotheliale Progenitorzellen (EPC) sind wichtig bei der Neovaskularisierung. Die frühe Vaskularisierung von grossen Knochendefekten kann für das Überleben und die Funktion von mesenchymalen Stammzellen (MSC) und knochenbildenden Zellen entscheidend sein. Kann die Implantation von EPC und MSC auf osteokonduktiven beta-Tricalciumphosphat (beta-TCP) in einem "critical-size" Knochendefekt des Femur von athymischen Ratten die frühe Vaskularisierung und die Knochenheilung in vivo verbessern?
Methodik: Humane EPC wurden aus Buffy-Coat und humane MSC aus Knochenmarkaspirat durch Dichtezentrifugation isoliert. 2.5 x 105 kultivierte und differenzierte EPC und MSC wurden in vitro auf beta-TCP geladen. In 145 athymischen, männlichen Ratten wurde das Femur osteotomiert, ein 5 mm Knochendefekt erzeugt und mit Fixateur externe stabilisiert. Die Knochendefekte wurden mit beta-TCP (Gruppe 1), beta-TCP und MSC (Gruppe 2), beta-TCP und EPC (Gruppe 3), beta-TCP und EPC und MSC (Gruppe 4) oder autologem Knochen (Gruppe 5) gefüllt. Nach 1 Woche (n=40), 4 Wochen (n=40), 8 Wochen (n=40) und 12 Wochen (n=25) wurden die Ratten getötet. Bei Pinlockerung wurde die Ratte ausgeschlossen. Die (immun)histologische Analyse (Färbung mit HE, VEGF-R2, vWF) der Vaskularisierung und Knochenneubildung erfolgte mit Image-Analysis-System. Nach 8 und 12 Wochen erfolgte ein µCT und ein 4-Punkte-Biegungstest. Für die statistische Analyse wurde der Kruskal-Wallis-Test verwendet.
Ergebnisse und Schlussfolgerungen: Nach 1 Woche zeigte sich bei der Implantation von EPC/MSC und EPC allein signifikant mehr primitive vaskuläre Plexus (p=0.01;p=0.048) als in Vergleichsgruppen. Im Vergleich zur TCP Gruppe war in allen anderen Versuchsgruppen signifikant mehr Knochenneubildung zu sehen (p<0.01). Ausserdem war in der EPC/MSC-Gruppe signifikant mehr Knochenbildung zu erkennen als in der MSC-Gruppe (p=0.03). Nach 12 Wochen zeigten alle Gruppen eine knöcherne Durchbauung des Defektes, jedoch zeigten bereits 8 Wochen nach Implantation von MSC/EPC 83% der Defekte eine stabile, knöcherne Durchbauung. Bei der Implantation von MSC kam es in 18% der Knochendefekte zum knöchernen Durchbau. Alle anderen experimentellen Gruppen zeigten nach 8 Wochen keine knöcherne Durchbauung. Diese Resultate konnten im µCT, biomechanischen Test und in der Histologie quantifiziert werden. EPC scheinen die frühe Vaskularisierung innerhalb eines Knochenkonstrukt in vivo zu stimulieren und das Einwachsverhalten von MSC zu verbessern, was zu einer beschleunigten Knochenheilung im Knochendefektmodell der Ratte führt.
Biofabrication of SDF-1 functionalized 3D-printed cell-free scaffolds for bone tissue regeneration
(2020)
Large segmental bone defects occurring after trauma, bone tumors, infections or revision surgeries are a challenge for surgeons. The aim of our study was to develop a new biomaterial utilizing simple and cheap 3D-printing techniques. A porous polylactide (PLA) cylinder was printed and functionalized with stromal-derived factor 1 (SDF-1) or bone morphogenetic protein 7 (BMP-7) immobilized in collagen type I. Biomechanical testing proved biomechanical stability and the scaffolds were implanted into a 6 mm critical size defect in rat femur. Bone growth was observed via x-ray and after 8 weeks, bone regeneration was analyzed with µCT and histological staining methods. Development of non-unions was detected in the control group with no implant. Implantation of PLA cylinder alone resulted in a slight but not significant osteoconductive effect, which was more pronounced in the group where the PLA cylinder was loaded with collagen type I. Addition of SDF-1 resulted in an osteoinductive effect, with stronger new bone formation. BMP-7 treatment showed the most distinct effect on bone regeneration. However, histological analyses revealed that newly formed bone in the BMP-7 group displayed a holey structure. Our results confirm the osteoinductive character of this 3D-biofabricated cell-free new biomaterial and raise new options for its application in bone tissue regeneration.
Treating large bone defects represents a major challenge in traumatic and orthopedic surgery. Bone tissue engineering provides a promising therapeutic option to improve the local bone healing response. In the present study tissue biocompatibility, systemic toxicity and tumorigenicity of a newly developed composite material consisting of polylactic acid (PLA) and 20% or 40% bioglass (BG20 and BG40), respectively, were analyzed. These materials were seeded with mesenchymal stem cells (MSC) and endothelial progenitor cells (EPC) and tested in a rat calvarial critical size defect model for 3 months and compared to a scaffold consisting only of PLA. Serum was analyzed for organ damage markers such as GOT and creatinine. Leukocyte count, temperature and free radical indicators were measured to determine the degree of systemic inflammation. Possible tumor occurrence was assessed macroscopically and histologically in slides of liver, kidney and spleen. Furthermore, the concentrations of serum malondialdehyde (MDA) and sodium oxide dismutase (SOD) were assessed as indicators of tumor progression. Qualitative tissue response towards the implants and new bone mass formation was histologically investigated. BG20 and BG40, with or without progenitor cells, did not cause organ damage, long-term systemic inflammatory reactions or tumor formation. BG20 and BG40 supported bone formation, which was further enhanced in the presence of EPCs and MSCs.
This investigation reflects good biocompatibility of the biomaterials BG20 and BG40 and provides evidence that additionally seeding EPCs and MSCs onto the scaffold does not induce tumor formation.
Chronic ethanol abuse is known to increase susceptibility to infections after injury, in part, by modification of macrophage function. Several intracellular signalling mechanisms are involved in the initiation of inflammatory responses, including the nuclear factor-κB (NF-κB) pathway. In this study, we investigated the systemic and hepatic effect of chronic ethanol feeding on in vivo activation of NF-κB in NF-κB(EGFP) reporter gene mice. Specifically, the study focused on Kupffer cell proinflammatory cytokines IL-6 and TNF-α and activation of NF-κB after chronic ethanol feeding followed by in vitro stimulation with lipopolysaccharide (LPS). We found that chronic ethanol upregulated NF-κB activation and increased hepatic and systemic proinflammatory cytokine levels. Similarly, LPS-stimulated IL-1 β release from whole blood was significantly enhanced in ethanol-fed mice. However, LPS significantly increased IL-6 and TNF-α levels. These results demonstrate that chronic ethanol feeding can improve the responsiveness of macrophage LPS-stimulated IL-6 and TNF-α production and indicate that this effect may result from ethanol-induced alterations in intracellular signalling through NF-κB. Furthermore, LPS and TNF-α stimulated the gene expression of different inflammatory mediators, in part, in a NF-κB-dependent manner.
BACKGROUND: Local implantation of ex vivo concentrated, washed and filtrated human bone marrow-derived mononuclear cells (BMC) seeded onto β-tricalciumphosphate (TCP) significantly enhanced bone healing in a preclinical segmental defect model. Based on these results, we evaluated in a first clinical phase-I trial safety and feasibility of augmentation with preoperatively isolated autologous BMC seeded onto β-TCP in combination with angle stable plate fixation for the therapy of proximal humeral fractures as a potential alternative to autologous bone graft from the iliac crest.
METHODS: 10 patients were enrolled to assess whether cell therapy with 1.3 × 106 autologous BMC/ml/ml β-TCP, collected on the day preceding the definitive surgery, is safe and feasible when seeded onto β-TCP in patients with a proximal humeral fracture. 5 follow-up visits for clinical and radiological controls up to 12 weeks were performed.
RESULTS: β-tricalciumphosphate fortification with BMC was feasible and safe; specifically, neither morbidity at the harvest site nor at the surgical wound site were observed. Neither local nor systemic inflammation was noted. All fractures healed within the observation time without secondary dislocation. Three adverse events were reported: one case each of abdominal wall shingles, tendon loosening and initial screw perforation, none of which presumed related to the IND.
CONCLUSIONS: Cell therapy with autologous BMC for bone regeneration appeared to be safe and feasible with no drug-related adverse reactions being described to date. The impression of efficacy was given, although the study was not powered nor controlled to detect such. A clinical trial phase-II will be forthcoming in order to formally test the clinical benefit of BMC-laden β-TCP for PHF patients. Trial registration The study was registered in the European Clinical Trial Register as EudraCT No. 2012-004037-17. Date of registration 30th of August 2012. Informed consent was signed from all patients enrolled.
Background. Leukotriene B4 (LTB4), a proinflammatory lipid mediator correlates well with the acute phase of Acute Respiratory Distress Syndrome (ARDS). Therefore, LTB4-levels were investigated to determine whether they might be a useful clinical marker in predicting pulmonary complications (PC) in multiply traumatized patients. Methods: Plasma levels of LTB4 were determined in 100 patients on admission (ED) and for five consecutive days (daily). Twenty healthy volunteers served as control. LTB4-levels were measured by ELISA. Thirty patients developed PC (pneumonia, respiratory failure, acute lung injury (ALI), ARDS, pulmonary embolism) and 70 had no PC (ØPC). Results. LTB4-levels in the PC-group [127.8 pg/mL, IQR: 104–200pg/ml] were significantly higher compared to the ØPC-group on admission [95.6 pg/mL, IQR: 55–143 pg/mL] or control-group [58.4 pg/mL, IQR: 36–108 pg/mL]. LTB4 continuously declined to basal levels from day 1 to 5 without differences between the groups. The cutoff to predict PC was calculated at 109.6 pg/mL (72% specificity, 67% sensitivity). LTB4 was not influenced by overall or chest injury severity, age, gender or massive transfusion. Patients with PC received mechanical ventilation for a significantly longer period of time, and had prolonged intensive care unit and overall hospital stay. Conclusion. High LTB4-levels indicate risk for PC development in multiply traumatized patients
Acute ethanol gavage attenuates hemorrhage/resuscitation-induced hepatic oxidative stress in rats
(2012)
Acute ethanol intoxication increases the production of reactive oxygen species (ROS). Hemorrhagic shock with subsequent resuscitation (H/R) also induces ROS resulting in cellular and hepatic damage in vivo. We examined the role of acute ethanol intoxication upon oxidative stress and subsequent hepatic cell death after H/R. 14 h before H/R, rats were gavaged with single dose of ethanol or saline (5 g/kg, EtOH and ctrl; H/R_EtOH or H/R_ctrl, resp.). Then, rats were hemorrhaged to a mean arterial blood pressure of 30 ± 2 mmHg for 60 min and resuscitated. Two control groups underwent surgical procedures without H/R (sham_ctrl and sham_EtOH, resp.). Liver tissues were harvested at 2, 24, and 72 h after resuscitation. EtOH-gavage induced histological picture of acute fatty liver. Hepatic oxidative (4-hydroxynonenal, 4-HNE) and nitrosative (3-nitrotyrosine, 3-NT) stress were significantly reduced in EtOH-gavaged rats compared to controls after H/R. Proapoptotic caspase-8 and Bax expressions were markedly diminished in EtOH-gavaged animals compared with controls 2 h after resuscitation. EtOH-gavage increased antiapoptotic Bcl-2 gene expression compared with controls 2 h after resuscitation. iNOS protein expression increased following H/R but was attenuated in EtOH-gavaged animals after H/R. Taken together, the data suggest that acute EtOH-gavage may attenuate H/R-induced oxidative stress thereby reducing cellular injury in rat liver.
Introduction. Cancellous bone is frequently used for filling bone defects in a clinical setting. It provides favourable conditions for regenerative cells such as MSC and early EPC. The combination of MSC and EPC results in superior bone healing in experimental bone healing models. Materials and Methods. We investigated the influence of osteogenic culture conditions on the endothelial properties of early EPC and the osteogenic properties of MSC when cocultured on cancellous bone. Additionally, cell adhesion, metabolic activity, and differentiation were assessed 2, 6, and 10 days after seeding.
Results. The number of adhering EPC and MSC decreased over time; however the cells remained metabolically active over the 10-day measurement period. In spite of a decline of lineage specific markers, cells maintained their differentiation to a reduced level. Osteogenic stimulation of EPC caused a decline but not abolishment of endothelial characteristics and did not induce osteogenic gene expression. Osteogenic stimulation of MSC significantly increased their metabolic activity whereas collagen-1α and alkaline phosphatase gene expressions declined. When cocultured with EPC, MSC’s collagen-1α gene expression increased significantly. Conclusion. EPC and MSC can be cocultured in vitro on cancellous bone under osteogenic conditions, and coculturing EPC with MSC stabilizes the latter’s collagen-1α gene expression.