Refine
Year of publication
Language
- English (593)
Has Fulltext
- yes (593)
Is part of the Bibliography
- no (593)
Keywords
- BESIII (20)
- e +-e − Experiments (20)
- Branching fraction (15)
- Particle and Resonance Production (9)
- Charm Physics (6)
- Quarkonium (6)
- Spectroscopy (6)
- Hadronic decays (5)
- QCD (5)
- Branching fractions (4)
Institute
- Physik (583)
- Frankfurt Institute for Advanced Studies (FIAS) (9)
- Informatik (1)
We present measurements of the differential cross sections of inclusive J/ψ meson production as a function of transverse momentum (pJ/ψT) using the μ+μ− and e+e− decay channels in proton+proton collisions at center-of-mass energies of 510 and 500 GeV, respectively, recorded by the STAR detector at the Relativistic Heavy Ion Collider. The measurement from the μ+μ− channel is for 0 <pJ/ψT< 9 GeV/c and rapidity range |yJ/ψ|< 0.4, and that from the e+e− channel is for 4 <pJ/ψT< 20 GeV/c and |yJ/ψ|< 1.0. The ψ(2S) to J/ψ ratio is also measured for 4 <pmesonT< 12 GeV/c through the e+e− decay channel. Model calculations, which incorporate different approaches toward the J/ψ production mechanism, are compared with experimental results and show reasonable agreement within uncertainties.
We report measurements of the longitudinal double-spin asymmetry, ALL, for inclusive jet and dijet production in polarized proton-proton collisions at midrapidity and center-of-mass energy s√ = 510 GeV, using the high luminosity data sample collected by the STAR experiment in 2013. These measurements complement and improve the precision of previous STAR measurements at the same center-of-mass energy that probe the polarized gluon distribution function at partonic momentum fraction 0.015 ≲x≲ 0.25. The dijet asymmetries are separated into four jet-pair topologies, which provide further constraints on the x dependence of the polarized gluon distribution function. These measurements are in agreement with previous STAR measurements and with predictions from current next-to-leading order global analyses. They provide more precise data at low dijet invariant mass that will better constraint the shape of the polarized gluon distribution function of the proton.
We report new STAR measurements of the single-spin asymmetries 𝐴𝐿 for 𝑊+ and 𝑊− bosons produced in polarized proton-proton collisions at √𝑠=510 GeV as a function of the decay-positron and decay-electron pseudorapidity. The data were obtained in 2013 and correspond to an integrated luminosity of 250 pb−1. The results are combined with previous results obtained with 86 pb−1. A comparison with theoretical expectations based on polarized lepton-nucleon deep-inelastic scattering and prior polarized proton-proton data suggests a difference between the ¯𝑢 and ¯𝑑 quark helicity distributions for 0.05<𝑥<0.25. In addition, we report new results for the double-spin asymmetries 𝐴𝐿𝐿 for 𝑊±, as well as 𝐴𝐿 for 𝑍/𝛾* production and subsequent decay into electron-positron pairs.
We report on the first measurements of J/ψ production at very low transverse momentum (pT< 0.2 GeV/c) in hadronic Au+Au collisions at √sNN = 200 GeV and U+U collisions at √sNN = 193 GeV. Remarkably, the inferred nuclear modification factor of J/ψ at mid-rapidity in Au+Au (U+U) collisions reaches about 24 (52) for pT< 0.05 GeV/c in the 60-80% collision centrality class. This noteworthy enhancement cannot be explained by hadronic production accompanied by cold and hot medium effects. In addition, the dN/dt distribution of J/ψ for the very low pT range is presented for the first time. The distribution is consistent with that expected from the Au nucleus and shows a hint of interference. Comparison of the measurements to theoretical calculations of coherent production shows that the excess yield can be described reasonably well and reveals a partial disruption of coherent production in semi-central collisions, perhaps due to the violent hadronic interactions. Incorporating theoretical calculations, the results strongly suggest that the dramatic enhancement of J/ψ yield observed at extremely low pT originates from coherent photon-nucleus interactions. In particular, coherently produced J/ψ's in violent hadronic collisions may provide a novel probe of the quark-gluon-plasma.
We report on the first measurements of J/ψ production at very low transverse momentum (pT< 0.2 GeV/c) in hadronic Au+Au collisions at √sNN = 200 GeV and U+U collisions at √sNN = 193 GeV. Remarkably, the inferred nuclear modification factor of J/ψ at mid-rapidity in Au+Au (U+U) collisions reaches about 24 (52) for pT< 0.05 GeV/c in the 60-80% collision centrality class. This noteworthy enhancement cannot be explained by hadronic production accompanied by cold and hot medium effects. In addition, the dN/dt distribution of J/ψ for the very low pT range is presented for the first time. The distribution is consistent with that expected from the Au nucleus and shows a hint of interference. Comparison of the measurements to theoretical calculations of coherent production shows that the excess yield can be described reasonably well and reveals a partial disruption of coherent production in semi-central collisions, perhaps due to the violent hadronic interactions. Incorporating theoretical calculations, the results strongly suggest that the dramatic enhancement of J/ψ yield observed at extremely low pT originates from coherent photon-nucleus interactions. In particular, coherently produced J/ψ's in violent hadronic collisions may provide a novel probe of the quark-gluon-plasma.
Rapidity-odd directed flow measurements at midrapidity are presented for Λ, Λ¯, K±, K0s and ϕ at sNN−−−−√= 7.7, 11.5, 14.5, 19.6, 27, 39, 62.4 and 200 GeV in Au+Au collisions recorded by the STAR detector at the Relativistic Heavy Ion Collider. These measurements greatly expand the scope of data available to constrain models with differing prescriptions for the equation of state of quantum chromodynamics. Results show good sensitivity for testing a picture where flow is assumed to be imposed before hadron formation and the observed particles are assumed to form via coalescence of constituent quarks. The pattern of departure from a coalescence-inspired sum-rule can be a valuable new tool for probing the collision dynamics.
Transverse spin transfer to Λ and ¯Λ hyperons in polarized proton-proton collisions at √𝑠=200 GeV
(2018)
The transverse spin transfer from polarized protons to Λ and Λ¯ hyperons is expected to provide sensitivity to the transversity distribution of the nucleon and to the transversely polarized fragmentation functions. We report the first measurement of the transverse spin transfer to Λ and Λ¯ along the polarization direction of the fragmenting quark, DTT, in transversely polarized proton-proton collisions at s√=200GeV with the STAR detector at RHIC. The data correspond to an integrated luminosity of 18pb−1 and cover the pseudorapidity range |η|<1.2 and transverse momenta pT up to 8GeV/c. The dependence on pT and η are presented. The DTT results are found to be comparable with a model prediction, and are also consistent with zero within uncertainties.
Measurement of the e+e−→π+π− cross section between 600 and 900 MeV using initial state radiation
(2016)
We extract the e+e− →π+π− cross section in the energy range between 600 and 900 MeV, exploiting the method of initial state radiation. A data set with an integrated luminosity of 2.93 fb−1 taken at a center-of-mass energy of 3.773 GeV with the BESIII detector at the BEPCII collider is used. The cross section is measured with a systematic uncertainty of 0.9%. We extract the pion form factor |Fπ|2 as well as the contribution of the measured cross section to the leading-order hadronic vacuum polarization contribution to (g−2)μ. We find this value to be aππ,LO μ (600–900 MeV) = (368.2 ±2.5stat±3.3sys) ·10−10, which is between the corresponding values using the BaBar or KLOE data.
The decays of χc2→K+K−π0, KSK±π∓ and π+π−π0 are studied with the ψ(3686) data samples collected with the Beijing Spectrometer (BESIII). For the first time, the branching fractions of χc2→K∗K¯¯¯¯¯, χc2→a±2(1320)π∓/a02(1320)π0 and χc2→ρ(770)±π∓ are measured. Here K∗K¯¯¯¯¯ denotes both K∗±K∓ and K∗0K¯¯¯¯¯0+c.c., and K∗ denotes the resonances K∗(892), K∗2(1430) and K∗3(1780). The observations indicate a strong violation of the helicity selection rule in χc2 decays into vector and pseudoscalar meson pairs. The measured branching fractions of χc2→K∗(892)K¯¯¯¯¯ are more than 20 times larger than that of χc2→ρ(770)±π∓, which implies the effects are largely due to U-spin symmetry breaking, rather than just isospin symmetry breaking in charmonium decays.