Refine
Year of publication
Language
- English (55)
Has Fulltext
- yes (55)
Is part of the Bibliography
- no (55)
Keywords
- Polarization (2)
- Azimuthal correlations (1)
- Canonical suppression (1)
- Charged-particle multiplicity (1)
- Charmonia (1)
- Di-hadron correlations (1)
- Elastic scattering (1)
- Flow (1)
- Heavy ion collisions (1)
- Heavy-ion (1)
Institute
A data-driven method was applied to Au+Au collisions at √sNN = 200 GeV made with the STAR detector at RHIC to isolate pseudorapidity distance η-dependent and η-independent correlations by using two- and four-particle azimuthal cumulant measurements. We identified a η-independent component of the correlation, which is dominated by anisotropic flow and flow fluctuations. It was also found to be independent of η within the measured range of pseudorapidity |η| < 1. In 20–30% central Au+Au collisions, the relative flow fluctuation was found to be 34%±2%(stat.)±3%(sys.) for particles with transverse momentum pT less than 2 GeV/c. The η-dependent part, attributed to nonflow correlations, is found to be 5% ± 2%(sys.) relative to the flow of the measured second harmonic cumulant at |η| > 0.7.
The acceptance-corrected dielectron excess mass spectra, where the known hadronic sources have been subtracted from the inclusive dielectron mass spectra, are reported for the first time at mid-rapidity |yee|<1 in minimum-bias Au+Au collisions at sNN−−−−√ = 19.6 and 200 GeV. The excess mass spectra are consistently described by a model calculation with a broadened ρ spectral function for Mee<1.1 GeV/c2. The integrated dielectron excess yield at sNN−−−−√ = 19.6 GeV for 0.4<Mee<0.75 GeV/c2, normalized to the charged particle multiplicity at mid-rapidity, has a value similar to that in In+In collisions at sNN−−−−√ = 17.3 GeV. For sNN−−−−√ = 200 GeV, the normalized excess yield in central collisions is higher than that at sNN−−−−√ = 17.3 GeV and increases from peripheral to central collisions. These measurements indicate that the lifetime of the hot, dense medium created in central Au+Au collisions at sNN−−−−√ = 200 GeV is longer than those in peripheral collisions and at lower energies.
We report new STAR measurements of the single-spin asymmetries 𝐴𝐿 for 𝑊+ and 𝑊− bosons produced in polarized proton-proton collisions at √𝑠=510 GeV as a function of the decay-positron and decay-electron pseudorapidity. The data were obtained in 2013 and correspond to an integrated luminosity of 250 pb−1. The results are combined with previous results obtained with 86 pb−1. A comparison with theoretical expectations based on polarized lepton-nucleon deep-inelastic scattering and prior polarized proton-proton data suggests a difference between the ¯𝑢 and ¯𝑑 quark helicity distributions for 0.05<𝑥<0.25. In addition, we report new results for the double-spin asymmetries 𝐴𝐿𝐿 for 𝑊±, as well as 𝐴𝐿 for 𝑍/𝛾* production and subsequent decay into electron-positron pairs.
Transverse spin transfer to Λ and ¯Λ hyperons in polarized proton-proton collisions at √𝑠=200 GeV
(2018)
The transverse spin transfer from polarized protons to Λ and Λ¯ hyperons is expected to provide sensitivity to the transversity distribution of the nucleon and to the transversely polarized fragmentation functions. We report the first measurement of the transverse spin transfer to Λ and Λ¯ along the polarization direction of the fragmenting quark, DTT, in transversely polarized proton-proton collisions at s√=200GeV with the STAR detector at RHIC. The data correspond to an integrated luminosity of 18pb−1 and cover the pseudorapidity range |η|<1.2 and transverse momenta pT up to 8GeV/c. The dependence on pT and η are presented. The DTT results are found to be comparable with a model prediction, and are also consistent with zero within uncertainties.
Dihadron angular correlations in d + Au collisions at √sNN = 200 GeV are reported as a function of the measured zero-degree calorimeter neutral energy and the forward charged hadron multiplicity in the Au-beam direction. A finite correlated yield is observed at large relative pseudorapidity (η) on the near side (i.e. relative azimuth φ ∼ 0). This correlated yield as a function of η appears to scale with the dominant, primarily jet-related, away-side (φ ∼ π) yield. The Fourier coefficients of the φ correlation, Vn = (cosnφ), have a strong η dependence. In addition, it is found that V1 is approximately inversely proportional to the mid-rapidity event multiplicity, while V2 is independent of it with similar magnitude in the forward (d-going) and backward (Au-going) directions.
Rapidity-odd directed flow measurements at midrapidity are presented for Λ, Λ¯, K±, K0s and ϕ at sNN−−−−√= 7.7, 11.5, 14.5, 19.6, 27, 39, 62.4 and 200 GeV in Au+Au collisions recorded by the STAR detector at the Relativistic Heavy Ion Collider. These measurements greatly expand the scope of data available to constrain models with differing prescriptions for the equation of state of quantum chromodynamics. Results show good sensitivity for testing a picture where flow is assumed to be imposed before hadron formation and the observed particles are assumed to form via coalescence of constituent quarks. The pattern of departure from a coalescence-inspired sum-rule can be a valuable new tool for probing the collision dynamics.
Di-hadron correlations with identified leading hadrons in 200 GeV Au+Au and d+Au collisions at STAR
(2015)
The STAR collaboration presents for the first time two-dimensional di-hadron correlations with identified leading hadrons in 200 GeV central Au+Au and minimum-bias d+Au collisions to explore hadronization mechanisms in the quark gluon plasma. The enhancement of the jet-like yield for leading pions in Au+Au data with respect to the d+Au reference and the absence of such an enhancement for leading non-pions (protons and kaons) are discussed within the context of a quark recombination scenario. The correlated yield at large angles, specifically in the \emph{ridge region}, is found to be significantly higher for leading non-pions than pions. The consistencies of the constituent quark scaling, azimuthal harmonic model and a mini-jet modification model description of the data are tested, providing further constraints on hadronization.
We report on a polarization measurement of inclusive J/ψ mesons in the di-electron decay channel at mid-rapidity at 2 < pT < 6 GeV/c in p + p collisions at √s = 200 GeV. Data were taken with the STAR detector at RHIC. The J/ψ polarization measurement should help to distinguish between different models of the J/ψ production mechanism since they predict different pT dependences of the J/ψ polarization. In this analysis, J/ψ polarization is studied in the helicity frame. The polarization parameter λθ measured at RHIC becomes smaller towards high pT , indicating more longitudinal J/ψ polarization as pT increases. The result is compared with predictions of presently available models.
Effect of event selection on jetlike correlation measurement in d+Au collisions at √sNN = 200 GeV
(2015)
Dihadron correlations are analyzed in √sNN = 200 GeV d + Au collisions classified by forward charged particle multiplicity and zero-degree neutral energy in the Au-beam direction. It is found that the jetlike correlated yield increases with the event multiplicity. After taking into account this dependence, the non-jet contribution on the away side is minimal, leaving little room for a back-to-back ridge in these collisions.
New measurements of directed flow for charged hadrons, characterized by the Fourier coefficient v1, are presented for transverse momenta pT, and centrality intervals in Au+Au collisions recorded by the STAR experiment for the center-of-mass energy range √sN N = 7.7–200 GeV. The measurements underscore the importance of momentum conservation, and the characteristic dependencies on √sN N , centrality and pT are consistent with the expectations of geometric fluctuations generated in the initial stages of the collision, acting in concert with a hydrodynamic-like expansion. The centrality and pT dependencies of veven 1 , as well as an observed similarity between its excitation function and that for v3, could serve as constraints for initial-state models. The veven 1 excitation function could also provide an important supplement to the flow measurements employed for precision extraction of the temperature dependence of the specific shear viscosity.