Refine
Year of publication
- 2021 (1)
Document Type
- Article (1)
Language
- English (1)
Has Fulltext
- yes (1)
Is part of the Bibliography
- no (1)
Keywords
- Curvature measure (1)
- Lipschitz–Killing measures (1)
- Pseudo-Riemannian manifolds (1)
- Valuation (1)
- Weyl principle (1)
Institute
The recently introduced Lipschitz–Killing curvature measures on pseudo-Riemannian manifolds satisfy a Weyl principle, i.e. are invariant under isometric embeddings. We show that they are uniquely characterized by this property. We apply this characterization to prove a Künneth-type formula for Lipschitz–Killing curvature measures, and to classify the invariant generalized valuations and curvature measures on all isotropic pseudo-Riemannian space forms.