Refine
Year of publication
- 2003 (1)
Document Type
- Doctoral Thesis (1)
Language
- German (1)
Has Fulltext
- yes (1)
Is part of the Bibliography
- no (1)
Institute
Die Mehrzahl der akuten B-Zell Leukämien (B-ALL) im Kindesalter kann heutzutage geheilt werden (ca. 80%). Es gibt jedoch eine Untergruppe, die sog. Hochrisiko-Leukämien, der ein anderer Pathomechanismus zu Grude liegt und für die keine effektive Therapie zur Verfügung steht. Diese Form tritt fast ausschliesslich bei Kleinkindern im ersten Lebensjahr und bei älteren Patienten als Sekundärleukämie nach Chemotherapie auf. Diese akuten Hochrisiko-Leukämien sind zu 80% mit Translokationen des MLL Gens, Chromosom 11, Bande q23, assoziiert. Die reziproke Translokation t(4;11), bei der das MLL Gen mit dem AF-4 Gen fusioniert wird, hat die Expression der zwei funktionellen Derivatproteine MLL.AF-4 und AF-4.MLL und gleichzeitig eine Dosisreduktion des nativen MLL Proteins um 50% zur Folge. Das Zusammenspiel dieser Fakoren scheint die Grundvoraussetzung für die pathologische klonale Expansion leukämischer Blasten zu sein. Aus Untersuchungen in Drosophila melanogaster und im Maussystem ist bereits bekannt, dass das Wildtyp MLL Protein eine essentielle Funktion in der Steuerung von Genexpression durch Histon- und Chromatinregulation ausübt. Daraus stellte sich als Gegenstand dieser Arbeit die Frage nach der bislang überwiegend unbekannten Wildtyp-Funktion des MLL Proteins, und inwieweit das native Expressionsmuster einer Zelle durch die MLL Dosisreduktion beeinflusst, bzw. verändert wird. Zunächst wurden die MLL Targetgene identifiziert, und zwar anhand von je zwei DNA-Microchip-Hybridisierungen mit cRNA aus den MLL+/+ und MLL-/- Fibroblasten-Zelllinien. Der Expressionsvergleich dieser Datensätze ergab insgesamt 197 differentiell exprimierte Gene, die sich in der Expressionsstärke um mind. den 2,5-fachen Wert unterscheiden. Davon wurden 136 Gene bei völliger Abwesenheit des MLL Proteins, im Vergleich zum Normalzustand der Wildtyp-Zellen, um mind. den 2,5-fachen Wert transkriptionell aktiviert, die übrigen 61 Targetgene um mind. diese Stärke transkriptionell deaktiviert. Die Entdeckung dieser transkriptionell reprimierenden Eigenschaften des MLL Proteins, von dem bislang ausschliesslich aktivierende und transkriptionsaufrechterhaltende Eigenschaften bekannt waren, ist eines der wesentlichen Ergebnisse der vorliegenden Arbeit. Ein Teil der, durch die Abwesenheit des MLL Proteins hochregulierten 136 Gene ist bereits als Tumormarker bekannt oder an folgenden onkogenen Mechanismen beteiligt: Proliferation durch Fehlsteuerung des Zellzyklus mit gesteigerter Nukleotid-Biosynthese, erhöhte Migrationsaktivität durch veränderte extrazelluläre Matrix mit der Folge von Metastasierung/Organinfiltration, erhöhter Schutz vor proteolytischem Abbau nukleärer (Onko-) Proteine, und der Generation von Spleiss-Varianten mit z.T. negativem Einfluss auf essentielle Differenzierungswege. Zu diesen, in der Summe das Krebsrisiko erhöhenden Effekten, kommt noch hinzu, dass eine Gegenregulation durch MLL induzierte Expression von Tumorsuppressoren (verschiedene Zellzyklus- Inhibitoren) fehlt. Da bei Leukämie-Zellen die MLL Proteindosis reduziert ist, liegt der Schluss nahe, den oben genannten 136 identifizierten Genen eine mögliche direkte Beteiligung an der Leukämogenese beizumessen. Die meisten der 61 Gene, die durch das MLL Protein transkriptionell aktiviert wurden, kodieren für Faktoren, die zum größten Teil in embryonale Differenzierungsprozesse involviert sind. Dabei spielt die Entwicklung von meso- und ektodermalen Geweben eine besondere Rolle. Das MLL Protein ist somit für die Organogenese von Herz, Leber, Nieren, sensorischen Organen, hämatopoietischen Zellen und ebenso für Knochen und Muskeln essentiell. Die gewonnenen Daten wurden durch verschiedene Experimente (subtraktive Klonierung und RT-PCR) verifiziert und die wenigen, bereits publizierten MLL Targetgene konnten durch diese Arbeit bestätigt werden. Neben den Targetgenen des MLL Proteins sollten auch diejenigen der beiden Derivatproteine MLL.AF-4 und AF-4.MLL identifiziert werden. MLL+/+ Zellen wurden mit den humanen Derivatkonstrukten stabil transfiziert und im Vergleich zur Leervektor-Kontrolle per DNA-Microchips analysiert. Wieder Erwarten wurden keine unterschiedlichen Transkriptionsmuster erhalten. Daraufhin wurden Komplementationsexperimente zur Eignungsüberprüfung des Testsystems durchgeführt. Es stellte sich heraus, dass das humane MLL Expressionskonstrukt die MLL-/- Zellen funktionell nicht komplementieren konnte. Dafür gibt es verschiedene Erklärungsansätze, wobei jedoch die Hypothese, dass das "transkriptionelle Gedächtnis" in den murinen embryonalen Fibroblasten (Entwicklungsstatus Tag 10,5 p.c.), bereits stabil etabliert und nur noch marginal veränderbar ist, die Wahrscheinlichste ist. Sollte sich herausstellen, dass die epigenetische Programmierung der Zellen verantwortlich für die hier erhaltenen Ergebnisse ist, hätte das einen dramatischen Einfluss auf unser Verständnis vom Leukämie-Pathomechanismus. Es würde nämlich bedeuten, dass MLL und davon abgeleitete reziproke Derivatproteine nur in einem engen Zeitfenster Einfluss auf Genexpressionsmuster haben und nach einen "hit and run" Mechanismus die Leukämie auslösen.