Refine
Year of publication
- 2023 (3)
Document Type
- Preprint (3)
Language
- English (3)
Has Fulltext
- yes (3)
Is part of the Bibliography
- no (3)
Institute
In relativistic heavy-ion collisions, a global spin polarization, PH, of Λ and Λ¯ hyperons along the direction of the system angular momentum was discovered and measured across a broad range of collision energies and demonstrated a trend of increasing PH with decreasing sNN−−−√. A splitting between Λ and Λ¯ polarization may be possible due to their different magnetic moments in a late-stage magnetic field sustained by the quark-gluon plasma which is formed in the collision. The results presented in this study find no significant splitting at the collision energies of sNN−−−√=19.6 and 27 GeV in the RHIC Beam Energy Scan Phase II using the STAR detector, with an upper limit of PΛ¯−PΛ<0.24% and PΛ¯−PΛ<0.35%, respectively, at a 95% confidence level. We derive an upper limit on the naïve extraction of the late-stage magnetic field of B<9.4⋅1012 T and B<1.4⋅1013 T at sNN−−−√=19.6 and 27 GeV, respectively, although more thorough derivations are needed. Differential measurements of PH were performed with respect to collision centrality, transverse momentum, and rapidity. With our current acceptance of |y|<1 and uncertainties, we observe no dependence on transverse momentum and rapidity in this analysis. These results challenge multiple existing model calculations following a variety of different assumptions which have each predicted a strong dependence on rapidity in this collision-energy range.
In relativistic heavy-ion collisions, a global spin polarization, PH, of Λ and Λ¯ hyperons along the direction of the system angular momentum was discovered and measured across a broad range of collision energies and demonstrated a trend of increasing PH with decreasing sNN−−−√. A splitting between Λ and Λ¯ polarization may be possible due to their different magnetic moments in a late-stage magnetic field sustained by the quark-gluon plasma which is formed in the collision. The results presented in this study find no significant splitting at the collision energies of sNN−−−√=19.6 and 27 GeV in the RHIC Beam Energy Scan Phase II using the STAR detector, with an upper limit of PΛ¯−PΛ<0.24% and PΛ¯−PΛ<0.35%, respectively, at a 95% confidence level. We derive an upper limit on the naïve extraction of the late-stage magnetic field of B<9.4⋅1012 T and B<1.4⋅1013 T at sNN−−−√=19.6 and 27 GeV, respectively, although more thorough derivations are needed. Differential measurements of PH were performed with respect to collision centrality, transverse momentum, and rapidity. With our current acceptance of |y|<1 and uncertainties, we observe no dependence on transverse momentum and rapidity in this analysis. These results challenge multiple existing model calculations following a variety of different assumptions which have each predicted a strong dependence on rapidity in this collision-energy range.
In relativistic heavy-ion collisions, a global spin polarization, PH, of Λ and Λ¯ hyperons along the direction of the system angular momentum was discovered and measured across a broad range of collision energies and demonstrated a trend of increasing PH with decreasing sNN−−−√. A splitting between Λ and Λ¯ polarization may be possible due to their different magnetic moments in a late-stage magnetic field sustained by the quark-gluon plasma which is formed in the collision. The results presented in this study find no significant splitting at the collision energies of sNN−−−√=19.6 and 27 GeV in the RHIC Beam Energy Scan Phase II using the STAR detector, with an upper limit of PΛ¯−PΛ<0.24% and PΛ¯−PΛ<0.35%, respectively, at a 95% confidence level. We derive an upper limit on the naïve extraction of the late-stage magnetic field of B<9.4⋅1012 T and B<1.4⋅1013 T at sNN−−−√=19.6 and 27 GeV, respectively, although more thorough derivations are needed. Differential measurements of PH were performed with respect to collision centrality, transverse momentum, and rapidity. With our current acceptance of |y|<1 and uncertainties, we observe no dependence on transverse momentum and rapidity in this analysis. These results challenge multiple existing model calculations following a variety of different assumptions which have each predicted a strong dependence on rapidity in this collision-energy range.