Refine
Year of publication
- 2005 (1)
Document Type
- Doctoral Thesis (1)
Language
- German (1)
Has Fulltext
- yes (1)
Is part of the Bibliography
- no (1)
Keywords
- Dreidimensionaler Raum (1)
- Lichtmikroskop (1)
- Mehrdimensionale Systemtheorie (1)
- Messung (1)
- Messverfahren (1)
- Mikroskop (1)
- Punktantwort (1)
- Weißes Rauschen (1)
- impulse response (1)
- light-optical microscope (1)
Institute
- Physik (1)
Im Kapitel 1 "Einleitung" wird aufgezeigt, wie die rasante technologische Entwicklung der Mikroelektronik nicht nur die Mikroskopie vorantreibt, sondern auch anderen, neuen Verfahren, wie z. B. dem Laser Scanning Mikroskop, zum Durchbruch verhilft. Damit verbunden ist ein Bedarf an neuen, geeigneten Messverfahren. Dazu stellt diese Arbeit ein neues, im Rahmen einer linearen Näherung arbeitendes, dreidimensionales Messverfahren vor, und demonstriert es am Beispiel des Lichtmikroskops im Hellfelddurchlichtbetrieb, wobei hier die 3. Dimension durch die Aufnahme einer Fokusserie entsteht. Im Kapitel 2 "Modellbildung" wird zuerst ein detailliertes, physikalisches Modell des experimentellen Aufbaus gebildet, um darauf aufbauend ein dreidimensionales, system-theoretisches Modell anzufertigen, anhand dessen das neue Messverfahren erarbeitet werden kann. Dabei wird auch die Berechnung der dreidimensionalen Übertragungsfunktionen des Lichtmikroskops für die drei Fälle absorbierende Objekte, Phasenobjekte und transparente Selbstleuchter beschrieben. Innerhalb des Kapitels 3 "Messverfahren" werden im Kapitel 3.1 zunächst die bekannten Verfahren skizziert. Anschließend, dies ist der Kern der Arbeit, wird im Kapitel 3.2 das neue Messverfahren beschrieben. Es verwendet als Anregung zweidimensionales Rauschen, hier ein Rauschen um eine Ebene senkrecht zur optischen Achse. Das Verfahren wird zunächst für absorbierende Objekte, anschließend auch für Phasenobjekte ausgearbeitet, und dabei experimentell demonstriert. Von zentraler Beutung ist, dass das neue Messverfahren in der Lage ist, auch die Phase der dreidimensionalen Übertragungsfunktion aus den Bildern der Rauschanregung zu berechnen, falls die Übertragung durch die Aufnahmeeinheit gewisse, häufig bei einem vernachlässigbaren Fehler vorliegende, Symmetrieeigenschaften besitzt. Es werden verschiedene Fälle von Symmetrieeigenschaften berücksichtigt, um unterschiedliche experimentelle Gegebenheiten und die drei Fälle absorbierende Objekte, Phasenobjekte und transparente Selbstleuchter abzudecken. Das Kapitel 4 "Messungen" vergleicht die mit dem neuen Messverfahren, mit einem bekannten Messverfahren und durch Berechnung ermittelten Übertragungseigenschaften auch bei Modifikationen des Strahlengangs durch Einfügen von Zentralblenden in die Pupille des Objektivs und in die Pupille des Kondensors. Die auf unterschiedlichen Wegen ermittelten Übertragungseigenschaften werden miteinander verglichen. Der Vergleich veranschaulicht die Leistungsfähigkeit des neuen Messverfahrens. Das Kapitel 5 "Die Bildgewinnung" stellt verschiedene, mehr oder weniger bekannte Ansätze zur Nutzung des vorgestellten Messverfahrens zusammen, darunter vor allem auch die Wiener-Inversfilterung.