Refine
Document Type
- Article (4)
Language
- English (4)
Has Fulltext
- yes (4)
Is part of the Bibliography
- no (4)
Keywords
- Ab initio calculations (1)
- Catalysis (1)
- DNA conjugate (1)
- DNA recognition (1)
- Post-Hartree-Fock methods (1)
- RNA cleavage (1)
- RNA induced silencing complex (1)
- RNA recognition (1)
- Semi-empiricalcalculations (1)
- Western blot (1)
Institute
Redirection of miRNA‐argonaute complexes to specific target sites by synthetic adaptor molecules
(2020)
Dysregulation of miRNAs is connected with a multitude of diseases for which antagomirs and miRNA replacement are discussed as therapeutic options. Here, we suggest an alternative concept based on the redirection of RISCs to non‐native target sites. Metabolically stable DNA‐LNA mixmers are used to mediate the binding of RISCs to mRNAs without any direct base complementarity to the presented guide RNA strand. Physical redirection of a dye‐labeled miRNA model and of specific miRNA‐programmed RISC fractions present in HeLa extracts is demonstrated by pull‐down experiments with biotinylated capture oligonucleotides.
2-Aminobenzimidazole 10, although a weak catalyst in the monomeric state, is a successful building block for effective artificial ribonucleases. In an effort to identify new building blocks with improved catalytic potential, RNA cleavage by a variety of heterocyclic amidines and guanidines has been studied. In addition to pKa values and steric effects, the energy difference between tautomeric forms seems to be another important parameter for catalysis. This information is available from quantum chemical calculations on higher levels, but semiempirical methods are sufficient to get a first estimate. According to this assumption, imidazoimidazol 18, characterized by isoenergetic tautomeric forms, is superior to 2-aminoimidazol 6, the best candidate among the simple compounds. By far the largest effects are seen with 2-aminoperimidine 24, which rapidly cleaves RNA even in the micromolar concentration range. The impressive reactivity, however, is related to a tendency of compound 24 to form polycationic aggregates which are the actual catalysts.
2-Aminobenzimidazole 10, although a weak catalyst in the monomeric state, is a successful building block for effective artificial ribonucleases. In an effort to identify new building blocks with improved catalytic potential, RNA cleavage by a variety of heterocyclic amidines and guanidines has been studied. In addition to pKa values and steric effects, the energy difference between tautomeric forms seems to be another important parameter for catalysis. This information is available from quantum chemical calculations on higher levels, but semiempirical methods are sufficient to get a first estimate. According to this assumption, imidazoimidazol 18, characterized by isoenergetic tautomeric forms, is superior to 2-aminoimidazol 6, the best candidate among the simple compounds. By far the largest effects are seen with 2-aminoperimidine 24, which rapidly cleaves RNA even in the micromolar concentration range. The impressive reactivity, however, is related to a tendency of compound 24 to form polycationic aggregates which are the actual catalysts.
Redirection of the transcription factor SP1 to AT rich binding sites by a synthetic adaptor molecule
(2021)
The ubiquitous transcription factor SP1 binds to a GC rich consensus sequence. Here we describe an adaptor molecule that mediates binding of SP1 to a non-cognate DNA site rich in AT. The adaptor is comprised of a Dervan-type hairpin polyamide with high affinity to an AT rich hexamer duplex. It also carries a 27mer DNA that contains the SP1 consensus sequence. The synthesis and purification of the polyamide-DNA conjugate is reported. Pulldown experiments and western blot analysis demonstrate adaptor mediated binding of SP1 to the hexamer duplex TTGTTA.