Refine
Document Type
- Article (6)
Language
- English (6)
Has Fulltext
- yes (6)
Is part of the Bibliography
- no (6)
Keywords
Institute
- Medizin (6)
The induction of apoptosis is a direct way to eliminate tumor cells and improve cancer therapy. Apoptosis is tightly controlled by the balance of pro- and antiapoptotic Bcl-2 proteins. BH3 mimetics neutralize the antiapoptotic function of Bcl-2 proteins and are highly promising compounds inducing apoptosis in several cancer entities including pediatric malignancies. However, the clinical application of BH3 mimetics in solid tumors is impeded by the frequent resistance to single BH3 mimetics and the anticipated toxicity of high concentrations or combination treatments. One potential avenue to increase the potency of BH3 mimetics is the development of immune cell-based therapies to counteract the intrinsic apoptosis resistance of tumor cells and sensitize them to immune attack. Here, we describe spheroid cultures of pediatric cancer cells that can serve as models for drug testing. In these 3D models, we were able to demonstrate that activated allogeneic Natural Killer (NK) cells migrated into tumor spheroids and displayed cytotoxicity against a wide range of pediatric cancer spheroids, highlighting their potential as anti-tumor effector cells. Next, we investigated whether treatment of tumor spheroids with subtoxic concentrations of BH3 mimetics can increase the cytotoxicity of NK cells. Notably, the cytotoxic effects of NK cells were enhanced by the addition of BH3 mimetics. Treatment with either the Bcl-XL inhibitor A1331852 or the Mcl-1 inhibitor S63845 increased the cytotoxicity of NK cells and reduced spheroid size, while the Bcl-2 inhibitor ABT-199 had no effect on NK cell-mediated killing. Taken together, this is the first study to describe the combination of BH3 mimetics targeting Bcl-XL or Mcl-1 with NK cell-based immunotherapy, highlighting the potential of BH3 mimetics in immunotherapy.
The duration of infectivity of SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) in living patients has been demarcated. In contrast, a possible SARS-CoV-2 infectivity of corpses and subsequently its duration under post mortem circumstances remain to be elucidated. The aim of this study was to investigate the infectivity and its duration of deceased COVID-19 (coronavirus disease) patients. Four SARS-CoV-2 infected deceased patients were subjected to medicolegal autopsy. Post mortem intervals (PMI) of 1, 4, 9 and 17 days, respectively, were documented. During autopsy, swabs and organ samples were taken and examined by RT-qPCR (real-time reverse transcription-polymerase chain reaction) for the detection of SARS-CoV-2 ribonucleic acid (RNA). Determination of infectivity was performed by means of virus isolation in cell culture. In two cases, virus isolation was successful for swabs and tissue samples of the respiratory tract (PMI 4 and 17 days). The two infectious cases showed a shorter duration of COVID-19 until death than the two non-infectious cases (2 and 11 days, respectively, compared to > 19 days), which correlates with studies of living patients, in which infectivity could be narrowed to about 6 days before to 12 days after symptom onset. Most notably, infectivity was still present in one of the COVID-19 corpses after a post-mortem interval of 17 days and despite already visible signs of decomposition. To prevent SARS-CoV-2 infections in all professional groups involved in the handling and examination of COVID-19 corpses, adequate personal safety standards (reducing or avoiding aerosol formation and wearing FFP3 [filtering face piece class 3] masks) have to be enforced for routine procedures.
In murine models, the expression of inducible nitric oxide synthase (iNOS) in myocardial infarction (MI) has been reported to be the result of tissue injury and inflammation. In the present study, mRNA expression of iNOS, hypoxia-inducible factor-1α (HIF-1α), and vascular endothelial growth factor (VEGF) was investigated in postmortem human infarction hearts. Since HIF-1α is the inducible subunit of the transcription factor HIF-1, which regulates transcription of iNOS and VEGF, the interrelation between the three genes was observed, to examine the molecular processes during the emergence of MI. iNOS and VEGF mRNAs were found to be significantly upregulated in the affected regions of MI hearts in comparison to healthy controls. Upregulation of HIF-1α was also present but not significant. Correlation analysis of the three genes indicated a stronger and significant correlation between HIF-1α and iNOS mRNAs than between HIF-1α and VEGF. The results of the study revealed differences in the expression patterns of HIF-1 downstream targets. The stronger transcription of iNOS by HIF-1 in the affected regions of MI hearts may represent a pathological process, since no correlation of iNOS and HIF-1α mRNA was found in non-affected areas of MI hearts. Oxidative stress is considered to cause molecular changes in MI, leading to increased iNOS expression. Therefore, it may also represent a forensic marker for detection of early changes in heart tissue.
Sudden cardiac death (SCD) in adolescents and young adults may be the first manifestation of an inherited arrhythmic syndrome. Thus identification of a genetic origin in sudden death cases deemed inconclusive after a comprehensive autopsy and may help to reduce the risk of lethal episodes in the remaining family. Using next-generation sequencing (NGS), a large number of variants of unknown significance (VUS) are detected. In the majority of cases, there is insufficient evidence of pathogenicity, representing a huge dilemma in current genetic investigations. Misinterpretation of such variants may lead to inaccurate genetic diagnoses and/or the adoption of unnecessary and/or inappropriate therapeutic approaches. In our study, we applied current (ACMG) recommendations for variant classification in post-mortem genetic screening of a cohort of 56 SCD victims. We identified a total 53 rare protein-altering variants (MAF < 0.2%) classified as VUS or worse. Twelve percent of the cases exhibited a clinically actionable variant (pathogenic, likely pathogenic or VUS – potentially pathogenic) that would warrant cascade genetic screening in relatives. Most of the variants detected by means of the post-mortem genetic investigations were VUS. Thus, genetic testing by itself might be fairly meaningless without supporting background data. This data reinforces the need for an experienced multidisciplinary team for obtaining reliable and accountable interpretations of variant significance for elucidating potential causes for SCDs in the young. This enables the early identification of relatives at risk or excludes family members as genetic carriers. Also, development of adequate forensic guidelines to enable appropriate interpretation of rare genetic variants is fundamental.
Chronic granulomatous disease (CGD) is a primary immunodeficiency, which is diagnosed in most patients between one and three years of age. Here we report on a boy who presented at birth with extensive skin lesions and lymphadenopathy which were caused by CGD. An analysis of the literature revealed 24 patients with CGD who became symptomatic during the first six weeks of life. Although pulmonary complications and skin lesions due to infection were the leading symptoms, clinical features were extremely heterogenous. As follow-up was not well specified in most patients, the long-term prognosis of children with very early onset of CGD remains unknown.
Depletion of yeast/fly Ataxin-2 rescues TDP-43 overexpression toxicity. In mouse models of Amyotrophic Lateral Sclerosis via TDP-43 overexpression, depletion of its ortholog ATXN2 mitigated motor neuron degeneration and extended lifespan from 25 days to >300 days. There is another ortholog in mammals, named ATXN2L (Ataxin-2-like), which is almost uncharacterized but also functions in RNA surveillance at stress granules. We generated mice with Crispr/Cas9-mediated deletion of Atxn2l exons 5-8, studying homozygotes prenatally and heterozygotes during aging. Our novel findings indicate that ATXN2L absence triggers mid-gestational embryonic lethality, affecting female animals more strongly. Weight and development stages of homozygous mutants were reduced. Placenta phenotypes were not apparent, but brain histology showed lamination defects and apoptosis. Aged heterozygotes showed no locomotor deficits or weight loss over 12 months. Null mutants in vivo displayed compensatory efforts to maximize Atxn2l expression, which were prevented upon nutrient abundance in vitro. Mouse embryonal fibroblast cells revealed more multinucleated giant cells upon ATXN2L deficiency. In addition, in human neural cells, transcript levels of ATXN2L were induced upon starvation and glucose and amino acids exposure, but this induction was partially prevented by serum or low cholesterol administration. Neither ATXN2L depletion triggered dysregulation of ATXN2, nor a converse effect was observed. Overall, this essential role of ATXN2L for embryogenesis raises questions about its role in neurodegenerative diseases and neuroprotective therapies.