Refine
Year of publication
Document Type
- Article (49)
Language
- English (49)
Has Fulltext
- yes (49)
Is part of the Bibliography
- no (49)
Keywords
- glioblastoma (5)
- epilepsy (3)
- glioma (3)
- meningioma (3)
- Fasting (2)
- Glioblastoma (2)
- Glioma (2)
- Glucose (2)
- IDH mutation (2)
- Ketogenic diet (2)
Institute
- Medizin (48)
- MPI für Hirnforschung (2)
- Sportwissenschaften (2)
Transfusion of red blood cells (RBC) in patients undergoing major elective cranial surgery is associated with increased morbidity, mortality and prolonged hospital length of stay (LOS). This retrospective single center study aims to identify the clinical outcome of RBC transfusions on skull base and non-skull base meningioma patients including the identification of risk factors for RBC transfusion. Between October 2009 and October 2016, 423 patients underwent primary meningioma resection. Of these, 68 (16.1%) received RBC transfusion and 355 (83.9%) did not receive RBC units. Preoperative anaemia rate was significantly higher in transfused patients (17.7%) compared to patients without RBC transfusion (6.2%; p = 0.0015). In transfused patients, postoperative complications as well as hospital LOS was significantly higher (p < 0.0001) compared to non-transfused patients. After multivariate analyses, risk factors for RBC transfusion were preoperative American Society of Anaesthesiologists (ASA) physical status score (p = 0.0247), tumor size (p = 0.0006), surgical time (p = 0.0018) and intraoperative blood loss (p < 0.0001). Kaplan-Meier curves revealed significant influence on overall survival by preoperative anaemia, RBC transfusion, smoking, cardiovascular disease, preoperative KPS ≤ 60% and age (elderly ≥ 75 years). We concluded that blood loss due to large tumors or localization near large vessels are the main triggers for RBC transfusion in meningioma patients paired with a potential preselection that masks the effect of preoperative anaemia in multivariate analysis. Further studies evaluating the impact of preoperative anaemia management for reduction of RBC transfusion are needed to improve the clinical outcome of meningioma patients.
Purpose: To investigate cortical thickness and cortical quantitative T2 values as imaging markers of microstructural tissue damage in patients with unilateral high-grade internal carotid artery occlusive disease (ICAOD).
Methods: A total of 22 patients with ≥70% stenosis (mean age 64.8 years) and 20 older healthy control subjects (mean age 70.8 years) underwent structural magnetic resonance imaging (MRI) and high-resolution quantitative (q)T2 mapping. Generalized linear mixed models (GLMM) controlling for age and white matter lesion volume were employed to investigate the effect of ICAOD on imaging parameters of cortical microstructural integrity in multivariate analyses.
Results: There was a significant main effect (p < 0.05) of the group (patients/controls) on both cortical thickness and cortical qT2 values with cortical thinning and increased cortical qT2 in patients compared to controls, irrespective of the hemisphere. The presence of upstream carotid stenosis had a significant main effect on cortical qT2 values (p = 0.01) leading to increased qT2 in the poststenotic hemisphere, which was not found for cortical thickness. The GLMM showed that in general cortical thickness was decreased and cortical qT2 values were increased with increasing age (p < 0.05).
Conclusion: Unilateral high-grade carotid occlusive disease is associated with widespread cortical thinning and prolongation of cortical qT2, presumably reflecting hypoperfusion-related microstructural cortical damage similar to accelerated aging of the cerebral cortex. Cortical thinning and increase of cortical qT2 seem to reflect different aspects and different pathophysiological states of cortical degeneration. Quantitative T2 mapping might be a sensitive imaging biomarker for early cortical microstructural damage.
Regorafenib CSF penetration, efficacy, and MRI patterns in recurrent malignant glioma patients
(2019)
(1) Background: The phase 2 Regorafenib in Relapsed Glioblastoma (REGOMA) trial indicated a survival benefit for patients with first recurrence of a glioblastoma when treated with the multikinase inhibitor regorafenib (REG) instead of lomustine. The aim of this retrospective study was to investigate REG penetration to cerebrospinal fluid (CSF), treatment efficacy, and effects on magnetic resonance imaging (MRI) in patients with recurrent high-grade gliomas.
(2) Methods: Patients were characterized by histology, adverse events, steroid treatment, overall survival (OS), and MRI growth pattern. REG and its two active metabolites were quantified by liquid chromatography/tandem mass spectrometry in patients’ serum and CSF.
(3) Results: 21 patients mainly with IDH-wildtype glioblastomas who had been treated with REG were retrospectively identified. Thirteen CFS samples collected from 3 patients of the cohort were available for pharmacokinetic testing. CSF levels of REG and its metabolites were significantly lower than in serum. Follow-up MRI was available in 19 patients and showed progressive disease (PD) in all but 2 patients. Two distinct MRI patterns were identified: 7 patients showed classic PD with progression of contrast enhancing lesions, whereas 11 patients showed a T2-dominant MRI pattern characterized by a marked reduction of contrast enhancement. Median OS was significantly better in patients with a T2-dominant growth pattern (10 vs. 27 weeks respectively, p = 0.003). Diffusion restrictions were observed in 13 patients.
(4) Conclusion: REG and its metabolites were detectable in CSF. A distinct MRI pattern that might be associated with an improved OS was observed in half of the patient cohort. Treatment response in the total cohort was poor.
Simple Summary: Pseudoprogression detection in glioblastoma patients remains a challenging task. Although pseudoprogression has only a moderate prevalence of 10–30% following first-line treatment of glioblastoma patients, it bears critical implications for affected patients. Non-invasive techniques, such as amino acid PET imaging using the tracer O-(2-[18F]-fluoroethyl)-L-tyrosine (FET), expose features that have been shown to provide useful information to distinguish tumor progression from pseudoprogression. The usefulness of FET-PET in IDH-wildtype glioblastoma exclusively, however, has not been investigated so far. Recently, machine learning (ML) algorithms have been shown to offer great potential particularly when multiparametric data is available. In this preliminary study, a Linear Discriminant Analysis-based ML algorithm was deployed in a cohort of newly diagnosed IDH-wildtype glioblastoma patients (n = 44) and demonstrated a significantly better diagnostic performance than conventional ROC analysis. This preliminary study is the first to assess the performance of ML in FET-PET for diagnosing pseudoprogression exclusively in IDH-wildtype glioblastoma and demonstrates its potential.
Abstract: Pseudoprogression (PSP) detection in glioblastoma remains challenging and has important clinical implications. We investigated the potential of machine learning (ML) in improving the performance of PET using O-(2-[18F]-fluoroethyl)-L-tyrosine (FET) for differentiation of tumor progression from PSP in IDH-wildtype glioblastoma. We retrospectively evaluated the PET data of patients with newly diagnosed IDH-wildtype glioblastoma following chemoradiation. Contrast-enhanced MRI suspected PSP/TP and all patients underwent subsequently an additional dynamic FET-PET scan. The modified Response Assessment in Neuro-Oncology (RANO) criteria served to diagnose PSP. We trained a Linear Discriminant Analysis (LDA)-based classifier using FET-PET derived features on a hold-out validation set. The results of the ML model were compared with a conventional FET-PET analysis using the receiver-operating-characteristic (ROC) curve. Of the 44 patients included in this preliminary study, 14 patients were diagnosed with PSP. The mean (TBRmean) and maximum tumor-to-brain ratios (TBRmax) were significantly higher in the TP group as compared to the PSP group (p = 0.014 and p = 0.033, respectively). The area under the ROC curve (AUC) for TBRmax and TBRmean was 0.68 and 0.74, respectively. Using the LDA-based algorithm, the AUC (0.93) was significantly higher than the AUC for TBRmax. This preliminary study shows that in IDH-wildtype glioblastoma, ML-based PSP detection leads to better diagnostic performance.
Simple Summary
Seizures are among the most common symptoms of meningioma patients even after surgery. This study sought to identify risk factors for early and late seizures in meningioma patients and to evaluate a modified version of a score to predict postoperative seizures on an independent cohort. The data underline that there are distinct factors identifying patients with a high risk of postoperative seizures following meningioma surgery which has been already shown before. We could further show that the high proportion of 43% of postoperative seizures occur as late seizures which are more dangerous because they may happen out of hospital. The modified STAMPE2 score could predict postoperative seizures when reaching very high scores but was not generally transferable to our independent cohort.
Abstract
Seizures are among the most common symptoms of meningioma. This retrospective study sought to identify risk factors for early and late seizures in meningioma patients and to evaluate a modified STAMPE2 score. In 556 patients who underwent meningioma surgery, we correlated different risk factors with the occurrence of postoperative seizures. A modified STAMPE2 score was applied. Risk factors for preoperative seizures were edema (p = 0.039) and temporal location (p = 0.038). For postoperative seizures preoperative tumor size (p < 0.001), sensomotory deficit (p = 0.004) and sphenoid wing location (p = 0.032) were independent risk factors. In terms of postoperative status epilepticus; sphenoid wing location (p = 0.022), tumor volume (p = 0.045) and preoperative seizures (p < 0.001) were independent risk factors. Postoperative seizures lead to a KPS deterioration and thus an impaired quality of life (p < 0.001). Late seizures occurred in 43% of patients with postoperative seizures. The small sub-cohort of patients (2.7%) with a STAMPE2 score of more than six points had a significantly increased risk for seizures (p < 0.001, total risk 70%). We concluded that besides distinct risk factors, high scores of the modified STAMPE2 score could estimate the risk of postoperative seizures. However, it seems not transferable to our cohort
Posterior fossa tumor surgery is challenging due to the proximity and exposure of cerebellar structures. A favorable operative approach is unknown. Following lesions to the dentato–rubro–olivary-pathway, a neurodegenerative disease called hypertrophic olivary degeneration (HOD) can occur. This study for the first time demonstrates that paravermal trans-cerebellar approaches are associated with a significantly higher likelihood of HOD on MRI when compared to other approaches. This finding can well be attributed to dentate nucleus (DN) injury. Furthermore, cerebellar mutism syndrome (CMS) was discussed in the literature to be correlated with HOD due to a functional overlap of pathways involved. We found no such correlation in this study, but HOD was shown to be a reliable indicator for surgical disruption of efferent cerebellar pathways involving the DN. Henceforth, neurosurgeons should consider more midline or lateral approaches in posterior fossa surgery to spare the DN whenever feasible, and focus on cerebellar functional anatomy in their preoperative planning.
Background: While swallowing disorders are frequent sequela following posterior fossa tumor (PFT) surgery in children, data on dysphagia frequency, severity, and outcome in adults are lacking. The aim of this study was to investigate dysphagia before and after surgical removal of PFT. Additionally, we tried to identify clinical predictors for postsurgical swallowing disorders. Furthermore, this study explored the three-month outcome of dysphagic patients.
Methods: In a cohort of patients undergoing PFT surgery, dysphagia was prospectively assessed pre- and postoperatively using fiberoptic endoscopic evaluation of swallowing. Patients with severe dysphagia at discharge were re-evaluated after three months. Additionally, clinical and imaging data were collected to identify predictors for post-surgical dysphagia. Results: We included 26 patients of whom 15 had pre-operative swallowing disorders. After surgery, worsening of pre-existing dysphagia could be noticed in 7 patients whereas improvement was observed in 2 and full recovery in 3 subjects. New-onset dysphagia after surgery occurred in a minority of 3 cases. Postoperatively, 47% of dysphagic patients required nasogastric tube feeding. Re-evaluation after three months of follow-up revealed that all dysphagic patients had returned to full oral intake.
Conclusion: Dysphagia is a frequent finding in patients with PFT already before surgery. Surgical intervention can infer a deterioration of impaired swallowing function placing affected patients at temporary risk for aspiration. In contrast, surgery can also accomplish beneficial results resulting in both improvement and full recovery. Overall, our findings show the need of early dysphagia assessment to define the safest feeding route for the patient.
BACKGROUND: hysical activity exerts a variety of long-term health benefits in older adults. In particular, it is assumed to be a protective factor against cognitive decline and dementia.
METHODS/DESIGN: Randomised controlled assessor blinded 2-armed trial (n = 60) to explore the exercise- induced neuroprotective and metabolic effects on the brain in cognitively healthy older adults. Participants (age ≥ 65), recruited within the setting of assisted living facilities and newspaper advertisements are allocated to a 12-week individualised aerobic exercise programme intervention or a 12-week waiting control group. Total follow-up is 24 weeks. The main outcome is the change in cerebral metabolism as assessed with Magnetic Resonance Spectroscopic Imaging reflecting changes of cerebral N-acetyl-aspartate and of markers of neuronal energy reserve. Imaging also measures changes in cortical grey matter volume. Secondary outcomes include a broad range of psychometric (cognition) and movement-related parameters such as nutrition, history of physical activity, history of pain and functional diagnostics. Participants are allocated to either the intervention or control group using a computer-generated randomisation sequence. The exercise physiologist in charge of training opens sealed and opaque envelopes and informs participants about group allocation. For organisational reasons, he schedules the participants for upcoming assessments and exercise in groups of five. All assessors and study personal other than exercise physiologists are blinded.
DISCUSSION: Magnetic Resonance Spectroscopic Imaging gives a deeper insight into mechanisms of exercise-induced changes in brain metabolism. As follow-up lasts for 6 months, this study is able to explore the mid-term cerebral metabolic effects of physical activity assuming that an individually tailored aerobic ergometer training has the potential to counteract brain ageing.
NCT02343029 (clinicaltrials.gov; 12 January 2015).
Quantitative T1 mapping indicates tumor infiltration beyond the enhancing part of glioblastomas
(2019)
The aim of this study was to evaluate whether maps of quantitative T1 (qT1) differences induced by a gadolinium‐based contrast agent (CA) are better suited than conventional T1‐weighted (T1w) MR images for detecting infiltration inside and beyond the peritumoral edema of glioblastomas. Conventional T1w images and qT1 maps were obtained before and after gadolinium‐based CA administration in 33 patients with glioblastoma before therapy. The following data were calculated: (i) absolute qT1‐difference maps (qT1 pre‐CA ‐ qT1 post‐CA), (ii) relative qT1‐difference maps, (iii) absolute and (iv) relative differences of conventional T1w images acquired pre‐ and post‐CA. The values of these four datasets were compared in four different regions: (a) the enhancing tumor, (b) the peritumoral edema, (c) a 5 mm zone around the pathology (defined as the sum of regions a and b), and (d) the contralateral normal appearing brain tissue. Additionally, absolute qT1‐difference maps (displayed with linear gray scaling) were visually compared with respective conventional difference images. The enhancing tumor was visible both in the difference of conventional pre‐ and post‐CA T1w images and in the absolute qT1‐difference maps, whereas only the latter showed elevated values in the peritumoral edema and in some cases even beyond. Mean absolute qT1‐difference values were significantly higher (P < 0.01) in the enhancing tumor (838 ± 210 ms), the peritumoral edema (123 ± 74 ms) and in the 5 mm zone around the pathology (81 ± 31 ms) than in normal appearing tissue (32 ± 35 ms). In summary, absolute qT1‐difference maps—in contrast to the difference of T1w images—of untreated glioblastomas appear to be able to visualize CA leakage, and thus might indicate tumor cell infiltration in the edema region and beyond. Therefore, the absolute qT1‐difference maps are potentially useful for treatment planning.
There is mounting evidence that aerobic exercise has a positive effect on cognitive functions in older adults. To date, little is known about the neurometabolic and molecular mechanisms underlying this positive effect. The present study used magnetic resonance spectroscopy and quantitative MRI to systematically explore the effects of physical activity on human brain metabolism and grey matter (GM) volume in healthy aging. This is a randomised controlled assessor-blinded two-armed trial (n=53) to explore exercise-induced neuroprotective and metabolic effects on the brain in cognitively healthy older adults. Participants (age >65) were allocated to a 12-week individualised aerobic exercise programme intervention (n=29) or a 12-week waiting control group (n=24). The main outcomes were the change in cerebral metabolism and its association to brain-derived neurotrophic factor (BDNF) levels as well as changes in GM volume. We found that cerebral choline concentrations remained stable after 12 weeks of aerobic exercise in the intervention group, whereas they increased in the waiting control group. No effect of training was seen on cerebral N-acetyl-aspartate concentrations, nor on markers of neuronal energy reserve or BDNF levels. Further, we observed no change in cortical GM volume in response to aerobic exercise. The finding of stable choline concentrations in the intervention group over the 3 month period might indicate a neuroprotective effect of aerobic exercise. Choline might constitute a valid marker for an effect of aerobic exercise on cerebral metabolism in healthy aging.