Refine
Document Type
- Article (1)
- Doctoral Thesis (1)
Language
- English (2)
Has Fulltext
- yes (2)
Is part of the Bibliography
- no (2)
Keywords
- Apoptosis (1)
- Cancer (1)
- Cell Death (1)
- Rhabdomyosarcoma (1)
- mTOR (1)
Suicide genes have been broadly used in gene therapy. They can serve as safety tools for conditional elimination of infused cells or for directed tumor therapy. To date, the Herpes simplex virus thymidine kinase/ ganciclovir (HSVtk/GCV) system is the most prominent and the most widely used suicidegene/prodrug combination. Despite its promising performance, the system displays limitations, which include relatively slow killing kinetics and toxicity of the prodrug GCV. Consequently, several groups have either developed new suicide-gene/prodrug combinations or attempted to improve the established HSVtk/GCV suicide system. The present study also aimed towards optimization of the HSVtk/GCV system. To do so, a novel, codon-optimized point mutant (A168H) of HSVtk was developed. The novel mutant was named TK.007. It was extensively tested for its efficiency in two relevant settings: (1) control of severe graft-versus-host disease (GvHD) after adoptive immunotherapy with Tlymphocytes, and (2) direct elimination of targeted tumor cells. TK.007 was compared to the broadly used wild-type, splice-corrected scHSVtk and to a codon-optimized HSVtk (coHSVtk) not bearing the above point mutation. (1) For experiments related to the adoptive immunotherapy approach, HSVtkvariants were expressed from a γ-retroviral MP71 vector as a fusion construct with the selection and marker gene tCD34. Expression levels for TK.007 in transduced lymphoid and myeloid cell lines were significantly higher at initial transduction and over a 12 week period compared to the commonly used scHSVtk and coHSVtk indicating reduced toxicity of TK.007. Killing kinetics of transduced cell lines (PM1 and K562) and primary human T cells were significantly faster for TK.007 in comparison to scHSVtk and coHSVtk in vitro. In vivo-functionality of TK.007 was assessed in an allogeneic transplantation model. T cells derived from C57BL/6J.Ly5.1 donor mice were transduced with MP71 vectors expressing scHSVtk or TK.007. Transduced cells were selected and transplanted into Balb/c Rag2-/- γ-/- immune-deficient recipient mice. Acute, severe GvHD occurred and was effectively abrogated in all mice transplanted with TK.007- transduced T cells, and in five out of six mice transplanted with scHSVtk-transduced cells. In a slightly modified quantitative allogeneic transplantation mouse model, significantly faster and more efficient in vivo killing was demonstrated for TK.007 as compared to scHSVtk, especially at low doses of GCV. (2) In order to assess TK.007 functionality in cells derived from solid tumors, HSVtk-variants were expressed from lentiviral gene ontology (LeGO) vectors in combination with an eGFP/neo-opt selection cassette. Transduced and selected tumor cell lines that derived from several tissues were eliminated at significantly lower GCV doses and to higher extents when transduced with TK.007 compared to scHSVtk. Moreover, a significantly stronger bystander effect of TK.007 was demonstrated. The superior in vitro efficiency of TK.007 was confirmed in an in vivo subcutaneous xenograft mouse model for glioblastoma in NOD/SCID mice. Mice transplanted with TK.007 transduced cells stayed tumor-free after treatment with different GCV-doses. On the contrary, mice of the scHSVtk group either demonstrated only transiently reduced tumor growth in the low-dose GCV group (10 mg/kg) compared to the control groups or suffered from relatively fast relapses after initial tumor shrinking in the standarddose (50 mg/kg) GCV group. As a result, all mice in the scHSVtk group died from vigorous tumor growth. In summary, in two different applications for suicide gene therapy the present study has demonstrated superior functional performance of the novel suicide gene TK.007 as compared to the broadly used wild-type scHSVtk. Differences became particularly pronounced at low doses of GCV. It can be concluded that the new TK.007-gene represents a promising alternative to the commonly used scHSVtk for gene therapeutic applications.
The PI3K/mammalian Target of Rapamycin (mTOR) pathway is often aberrantly activated in rhabdomyosarcoma (RMS) and represents a promising therapeutic target. Recent evaluation of AZD8055, an ATP-competitive mTOR inhibitor, by the Preclinical Pediatric Testing Program showed in vivo antitumor activity against childhood solid tumors, including RMS. Therefore, in the present study, we searched for AZD8055-based combination therapies. Here, we identify a new synergistic lethality of AZD8055 together with ABT-737, a BH3 mimetic that antagonizes Bcl-2, Bcl-xL, and Bcl-w but not Mcl-1. AZD8055 and ABT-737 cooperate to induce apoptosis in alveolar and embryonal RMS cells in a highly synergistic fashion (combination index < 0.2). Synergistic induction of apoptosis by AZD8055 and ABT-737 is confirmed on the molecular level, as AZD8055 and ABT-737 cooperate to trigger loss of mitochondrial membrane potential, activation of caspases, and caspase-dependent apoptosis that is blocked by the pan-caspase inhibitor Z-VAD-fmk. Similar to AZD8055, the PI3K/mTOR inhibitor NVP-BEZ235, the PI3K inhibitor NVP-BKM120 and Akt inhibitor synergize with ABT-737 to trigger apoptosis, whereas no cooperativity is found for the mTOR complex 1 inhibitor RAD001. Interestingly, molecular studies reveal a correlation between the ability of different PI3K/mTOR inhibitors to potentiate ABT-737-induced apoptosis and to suppress Mcl-1 protein levels. Importantly, knockdown of Mcl-1 increases ABT-737-induced apoptosis similar to AZD8055/ABT-737 cotreatment. This indicates that AZD8055-mediated suppression of Mcl-1 protein plays an important role in the synergistic drug interaction. By identifying a novel synergistic interaction of AZD8055 and ABT-737, our findings have important implications for the development of molecular targeted therapies for RMS.