Refine
Document Type
- Article (5)
Language
- English (5)
Has Fulltext
- yes (5)
Is part of the Bibliography
- no (5)
Keywords
- Aneurysm (1)
- Covid-19 (1)
- Glioblastoma (1)
- MGMT (1)
- Non-aneurysmal (1)
- Non-perimesencephalic (1)
- Obesity (1)
- Perimesencephalic (1)
- Prepontine (1)
- Red blood cell transfusion (1)
Institute
- Medizin (5)
Introduction: Vasospastic brain infarction is a devastating complication of aneurysmal subarachnoid hemorrhage (SAH). Using a probe for invasive monitoring of brain tissue oxygenation or blood flow is highly focal and may miss the site of cerebral vasospasm (CVS). Probe placement is based on the assumption that the spasm will occur either at the dependent vessel territory of the parent artery of the ruptured aneurysm or at the artery exposed to the focal thick blood clot. We investigated the likelihood of a focal monitoring sensor being placed in vasospasm or infarction territory on a hypothetical basis.
Methods: From our database we retrospectively selected consecutive SAH patients with angiographically proven (day 7–14) severe CVS (narrowing of vessel lumen >50%). Depending on the aneurysm location we applied a standard protocol of probe placement to detect the most probable site of severe CVS or infarction. We analyzed whether the placement was congruent with existing CVS/infarction.
Results: We analyzed 100 patients after SAH caused by aneurysms located in the following locations: MCA (n = 14), ICA (n = 30), A1CA (n = 4), AcoA or A2CA (n = 33), and VBA (n = 19). Sensor location corresponded with CVS territory in 93% of MCA, 87% of ICA, 76% of AcoA or A2CA, but only 50% of A1CA and 42% of VBA aneurysms. The focal probe was located inside the infarction territory in 95% of ICA, 89% of MCA, 78% of ACoA or A2CA, 50% of A1CA and 23% of VBA aneurysms.
Conclusion: The probability that a single focal probe will be situated in the territory of severe CVS and infarction varies. It seems to be reasonably accurate for MCA and ICA aneurysms, but not for ACA or VBA aneurysms.
Background: Subarachnoid hemorrhage (SAH) is mainly caused by ruptured cerebral aneurysms but in up to 15% of patients with SAH no bleeding source could be identified. Our objective was to analyze patient characteristics, clinical outcome and prognostic factors in patients suffering from non-aneurysmal SAH.
Methods: From 1999 to 2009, data of 125 patients with non-aneurysmal SAH were prospectively entered into a database. All patients underwent repetitive cerebral angiography. Outcome was assessed according to the modified Rankin Scale (mRS) (mRS 0-2 favorable vs. 3-6 unfavorable). Also, patients were divided in two groups according to the distribution of blood in the CT scan (perimesencephalic and non-perimesencephalic SAH).
Results: 106 of the 125 patients were in good WFNS grade (I-III) at admission (85%). Overall, favorable outcome was achieved in 104 of 125 patients (83%). Favorable outcome was associated with younger age (P < 0.001), good admission status (P < 0.0001), and absence of hydrocephalus (P = 0.001).73 of the 125 patients suffered from perimesencephalic SAH, most patients (90%) were in good grade at admission, and 64 achieved favorable outcome.52 of the 125 patients suffered from non-perimesencephalic SAH and 40 were in good grade at admission. Also 40 patients achieved favorable outcome.
Conclusions: Patients suffering from non-aneurysmal SAH have better prognosis compared to aneurysm related SAH and poor admission status was the only independent predictor of unfavorable outcome in the multivariate analysis. Patients with a non-perimesencephalic SAH have an increased risk of a worse neurological outcome. These patients should be monitored attentively.
Background: Perioperative anaemia leads to impaired oxygen supply with a risk of vital organ ischaemia. In healthy and fit individuals, anaemia can be compensated by several mechanisms. Elderly patients, however, have less compensatory mechanisms because of multiple co-morbidities and age-related decline of functional reserves. The purpose of the study is to evaluate whether elderly surgical patients may benefit from a liberal red blood cell (RBC) transfusion strategy compared to a restrictive transfusion strategy.
Methods: The LIBERAL Trial is a prospective, randomized, multicentre, controlled clinical phase IV trial randomising 2470 elderly (≥ 70 years) patients undergoing intermediate- or high-risk non-cardiac surgery. Registered patients will be randomised only if Haemoglobin (Hb) reaches ≤9 g/dl during surgery or within 3 days after surgery either to the LIBERAL group (transfusion of a single RBC unit when Hb ≤ 9 g/dl with a target range for the post-transfusion Hb level of 9–10.5 g/dl) or the RESTRICTIVE group (transfusion of a single RBC unit when Hb ≤ 7.5 g/dl with a target range for the post-transfusion Hb level of 7.5–9 g/dl). The intervention per patient will be followed until hospital discharge or up to 30 days after surgery, whichever occurs first. The primary efficacy outcome is defined as a composite of all-cause mortality, acute myocardial infarction, acute ischaemic stroke, acute kidney injury (stage III), acute mesenteric ischaemia and acute peripheral vascular ischaemia within 90 days after surgery. Infections requiring iv antibiotics with re-hospitalisation are assessed as important secondary endpoint. The primary endpoint will be analysed by logistic regression adjusting for age, cancer surgery (y/n), type of surgery (intermediate- or high-risk), and incorporating centres as random effect.
Discussion: The LIBERAL-Trial will evaluate whether a liberal transfusion strategy reduces the occurrence of major adverse events after non-cardiac surgery in the geriatric population compared to a restrictive strategy within 90 days after surgery.
Trial registration: ClinicalTrials.gov (identifier: NCT03369210).
Given the ongoing global SARS-CoV-2-vaccination efforts, clinical awareness needs to be raised regarding the possibility of an increased incidence of SARS-CoV-2-vaccine-related immune-mediated thrombocytopenia in patients with intracerebral hemorrhage (ICH) secondary to cerebral sinus and vein thrombosis (CVT) requiring (emergency) neurosurgical treatment in the context of vaccine-induced immune thrombotic thrombocytopenia (VITT). Only recently, an association of vaccinations and cerebral sinus and vein thrombosis has been described. In a number of cases, neurosurgical treatment is warranted for these patients and special considerations are warranted when addressing the perioperative coagulation. We, herein, describe the past management of patients with VITT and established a literature-guided algorithm for the treatment of patients when addressing the impaired coagulation in these patients. Increasing insights addressing the pathophysiology of SARS-CoV-2-vaccine-related immune-mediated thrombocytopenia guide physicians in developing an interdisciplinary algorithm taking into account the special considerations of this disease.
Purpose: The role of obesity in glioblastoma remains unclear, as previous analyses have reported contradicting results. Here, we evaluate the prognostic impact of obesity in two trial populations; CeTeG/NOA-09 (n = 129) for MGMT methylated glioblastoma patients comparing temozolomide (TMZ) to lomustine/TMZ, and GLARIUS (n = 170) for MGMT unmethylated glioblastoma patients comparing TMZ to bevacizumab/irinotecan, both in addition to surgery and radiotherapy.
Methods: The impact of obesity (BMI ≥ 30 kg/m2) on overall survival (OS) and progression-free survival (PFS) was investigated with Kaplan–Meier analysis and log-rank tests. A multivariable Cox regression analysis was performed including known prognostic factors as covariables.
Results: Overall, 22.6% of patients (67 of 297) were obese. Obesity was associated with shorter survival in patients with MGMT methylated glioblastoma (median OS 22.9 (95% CI 17.7–30.8) vs. 43.2 (32.5–54.4) months for obese and non-obese patients respectively, p = 0.001), but not in MGMT unmethylated glioblastoma (median OS 17.1 (15.8–18.9) vs 17.6 (14.7–20.8) months, p = 0.26). The prognostic impact of obesity in MGMT methylated glioblastoma was confirmed in a multivariable Cox regression (adjusted odds ratio: 2.57 (95% CI 1.53–4.31), p < 0.001) adjusted for age, sex, extent of resection, baseline steroids, Karnofsky performance score, and treatment arm.
Conclusion: Obesity was associated with shorter survival in MGMT methylated, but not in MGMT unmethylated glioblastoma patients.