Refine
Year of publication
Has Fulltext
- yes (26)
Is part of the Bibliography
- no (26)
Keywords
- AJAP1 (2)
- Light-sheet microscopy (2)
- Tribolium castaneum (2)
- 3D image analysis (1)
- Adherence junctions (1)
- Adhesion (1)
- Angiogenesis (1)
- BMP signaling (1)
- Biodiversity (1)
- Blastocysts (1)
Institute
- Biowissenschaften (20)
- Buchmann Institut für Molekulare Lebenswissenschaften (BMLS) (10)
- Exzellenzcluster Makromolekulare Komplexe (9)
- Frankfurt Institute for Advanced Studies (FIAS) (3)
- Medizin (3)
- Physik (3)
- Biochemie, Chemie und Pharmazie (2)
- Georg-Speyer-Haus (1)
- Institut für Ökologie, Evolution und Diversität (1)
- MPI für Hirnforschung (1)
A key event in cellular physiology is the decision between membrane biogenesis and fat storage. Phosphatidic acid (PA) is an important lipid intermediate and signaling lipid at the branch point of these pathways and constantly monitored by the transcriptional repressor Opi1 to orchestrate lipid metabolism. Here, we report on the mechanism of membrane recognition by Opi1 and identify an amphipathic helix (AH) for the selective binding to membranes containing PA over phosphatidylserine (PS). The insertion of the AH into the hydrophobic core of the membrane renders Opi1 sensitive to the lipid acyl chain composition as an important factor contributing to the regulation of membrane biogenesis. Based on these findings, we rationally designed the membrane binding properties of Opi1 to control its responsiveness in the physiological context. Using extensive molecular dynamics (MD) simulations, we identified two PA-selective three-finger grips that tightly bind the phosphate headgroup, while interacting less intimately and more transiently with PS. This work establishes lipid headgroup selectivity as a new feature in the family of AH-containing membrane property sensors.
A key event in cellular physiology is the decision between membrane biogenesis and fat storage. Phosphatidic acid (PA) is an important intermediate at the branch point of these pathways and is continuously monitored by the transcriptional repressor Opi1 to orchestrate lipid metabolism. In this study, we report on the mechanism of membrane recognition by Opi1 and identify an amphipathic helix (AH) for selective binding of PA over phosphatidylserine (PS). The insertion of the AH into the membrane core renders Opi1 sensitive to the lipid acyl chain composition and provides a means to adjust membrane biogenesis. By rational design of the AH, we tune the membrane-binding properties of Opi1 and control its responsiveness in vivo. Using extensive molecular dynamics simulations, we identify two PA-selective three-finger grips that tightly bind the PA phosphate headgroup while interacting less intimately with PS. This work establishes lipid headgroup selectivity as a new feature in the family of AH-containing membrane property sensors.
Shrew-1, also called AJAP1, is a transmembrane protein associated with E-cadherin-mediated adherence junctions and a putative tumor suppressor. Apart from its interaction with β-catenin and involvement in E-cadherin internalization, little structure or function information exists. Here we explored shrew-1 expression during postnatal differentiation of mammary gland as a model system. Immunohistological analyses with antibodies against either the extracellular or the cytoplasmic domains of shrew-1 consistently revealed the expression of full-length shrew-1 in myoepithelial cells, but only part of it in luminal cells. While shrew-1 localization remained unaltered in myoepithelial cells, nuclear localization occurred in luminal cells during lactation. Based on these observations, we identified two unknown shrew-1 transcript variants encoding N-terminally truncated proteins. The smallest shrew-1 protein lacks the extracellular domain and is most likely the only variant present in luminal cells. RNA analyses of human tissues confirmed that the novel transcript variants of shrew-1 exist in vivo and exhibit a differential tissue expression profile. We conclude that our findings are essential for the understanding and interpretation of future functional and interactome analyses of shrew-1 variants.
Endogenous AJAP1 associates with the cytoskeleton and attenuates angiogenesis in endothelial cells
(2017)
The adherens junction associated protein 1 (AJAP1, aka shrew-1) is presumably a type-I transmembrane protein localizing and interacting with the E-cadherin-catenin complex. In various tumors, AJAP1 expression is reduced or lost, including hepatocellular and esophageal squamous cell carcinoma, and glial-derived tumors. The aberrant expression of AJAP1 is associated with alterations in cell migration, invasion, increased tumor growth, and tumor vascularization, suggesting AJAP1 as a putative tumor suppressor. We show that AJAP1 attenuates sprouting angiogenesis by reducing endothelial migration and invasion capacities. Further, we show for the first time that endogenous AJAP1 is associated with the microtubule cytoskeleton. This linkage is independent from cell confluency and stable during angiogenic sprouting in vitro. Our work suggests that AJAP1 is a putative negative regulator of angiogenesis, reducing cell migration and invasion by interfering with the microtubule network. Based on our results and those of other authors, we suggest AJAP1 as a novel tumor suppressor and diagnostic marker.
The transition from local to global patterns governs the differentiation of mouse blastocysts
(2020)
During mammalian blastocyst development, inner cell mass (ICM) cells differentiate into epiblast (Epi) or primitive endoderm (PrE). These two fates are characterized by the expression of the transcription factors NANOG and GATA6, respectively. Here, we investigate the spatio-temporal distribution of NANOG and GATA6 expressing cells in the ICM of the mouse blastocysts with quantitative three-dimensional single cell-based neighbourhood analyses. We define the cell neighbourhood by local features, which include the expression levels of both fate markers expressed in each cell and its neighbours, and the number of neighbouring cells. We further include the position of a cell relative to the centre of the ICM as a global positional feature. Our analyses reveal a local three-dimensional pattern that is already present in early blastocysts: 1) Cells expressing the highest NANOG levels are surrounded by approximately nine neighbours, while 2) cells expressing GATA6 cluster according to their GATA6 levels. This local pattern evolves into a global pattern in the ICM that starts to emerge in mid blastocysts. We show that FGF/MAPK signalling is involved in the three-dimensional distribution of the cells and, using a mutant background, we further show that the GATA6 neighbourhood is regulated by NANOG. Our quantitative study suggests that the three-dimensional cell neighbourhood plays a role in Epi and PrE precursor specification. Our results highlight the importance of analysing the three-dimensional cell neighbourhood while investigating cell fate decisions during early mouse embryonic development.
Three-dimensional multicellular aggregates such as spheroids provide reliable in vitro substitutes for tissues. Quantitative characterization of spheroids at the cellular level is fundamental. We present the first pipeline that provides three-dimensional, high-quality images of intact spheroids at cellular resolution and a comprehensive image analysis that completes traditional image segmentation by algorithms from other fields. The pipeline combines light sheet-based fluorescence microscopy of optically cleared spheroids with automated nuclei segmentation (F score: 0.88) and concepts from graph analysis and computational topology. Incorporating cell graphs and alpha shapes provided more than 30 features of individual nuclei, the cellular neighborhood and the spheroid morphology. The application of our pipeline to a set of breast carcinoma spheroids revealed two concentric layers of different cell density for more than 30,000 cells. The thickness of the outer cell layer depends on a spheroid’s size and varies between 50% and 75% of its radius. In differently-sized spheroids, we detected patches of different cell densities ranging from 5 × 105 to 1 × 106 cells/mm3. Since cell density affects cell behavior in tissues, structural heterogeneities need to be incorporated into existing models. Our image analysis pipeline provides a multiscale approach to obtain the relevant data for a system-level understanding of tissue architecture.
Background: Due to the large amount of data produced by advanced microscopy, automated image analysis is crucial in modern biology. Most applications require reliable cell nuclei segmentation. However, in many biological specimens cell nuclei are densely packed and appear to touch one another in the images. Therefore, a major difficulty of three-dimensional cell nuclei segmentation is the decomposition of cell nuclei that apparently touch each other. Current methods are highly adapted to a certain biological specimen or a specific microscope. They do not ensure similarly accurate segmentation performance, i.e. their robustness for different datasets is not guaranteed. Hence, these methods require elaborate adjustments to each dataset.
Results: We present an advanced three-dimensional cell nuclei segmentation algorithm that is accurate and robust. Our approach combines local adaptive pre-processing with decomposition based on Lines-of-Sight (LoS) to separate apparently touching cell nuclei into approximately convex parts. We demonstrate the superior performance of our algorithm using data from different specimens recorded with different microscopes. The three-dimensional images were recorded with confocal and light sheet-based fluorescence microscopes. The specimens are an early mouse embryo and two different cellular spheroids. We compared the segmentation accuracy of our algorithm with ground truth data for the test images and results from state-of-the-art methods. The analysis shows that our method is accurate throughout all test datasets (mean F-measure: 91%) whereas the other methods each failed for at least one dataset (F-measure≤69%). Furthermore, nuclei volume measurements are improved for LoS decomposition. The state-of-the-art methods required laborious adjustments of parameter values to achieve these results. Our LoS algorithm did not require parameter value adjustments. The accurate performance was achieved with one fixed set of parameter values.
Conclusion: We developed a novel and fully automated three-dimensional cell nuclei segmentation method incorporating LoS decomposition. LoS are easily accessible features that ensure correct splitting of apparently touching cell nuclei independent of their shape, size or intensity. Our method showed superior performance compared to state-of-the-art methods, performing accurately for a variety of test images. Hence, our LoS approach can be readily applied to quantitative evaluation in drug testing, developmental and cell biology.
During gastrulation in the mouse embryo, dynamic cell movements including epiblast invagination and mesodermal layer expansion lead to the establishment of the three-layered body plan. The precise details of these movements, however, are sometimes elusive, because of the limitations in live imaging. To overcome this problem, we developed techniques to enable observation of living mouse embryos with digital scanned light sheet microscope (DSLM). The achieved deep and high time-resolution images of GFP-expressing nuclei and following 3D tracking analysis revealed the following findings: (i) Interkinetic nuclear migration (INM) occurs in the epiblast at embryonic day (E)6 and 6.5. (ii) INM-like migration occurs in the E5.5 embryo, when the epiblast is a monolayer and not yet pseudostratified. (iii) Primary driving force for INM at E6.5 is not pressure from neighboring nuclei. (iv) Mesodermal cells migrate not as a sheet but as individual cells without coordination.
In three-dimensional light microscopy, the heterogeneity of the optical density in a specimen ultimately limits the achievable penetration depth and hence the three-dimensional resolution. The most direct approach to reduce aberrations, improve the contrast and achieve an optimal resolution is to minimise the impact of changes of the refractive index along an optical path. Many implementations of light sheet fluorescence microscopy operate with a large chamber filled with an aqueous immersion medium and a further inner container with the specimen embedded in a possibly entirely different non-aqueous medium. In order to minimise the impact of the latter on the optical quality of the images, we use multi-facetted cuvettes fabricated from vacuum-formed ultra-thin fluorocarbon (FEP) foils. The ultra-thin FEP-foil cuvettes have a wall thickness of about 10–12 µm. They are impermeable to liquids, but not to gases, inert, durable, mechanically stable and flexible. Importantly, the usually fragile specimen can remain in the same cuvette from seeding to fixation, clearing and observation, without the need to remove or remount it during any of these steps. We confirm the improved imaging performance of ultra-thin FEP-foil cuvettes with excellent quality images of whole organs such us mouse oocytes, of thick tissue sections from mouse brain and kidney as well as of dense pancreas and liver organoid clusters. Our ultra-thin FEP-foil cuvettes outperform many other sample-mounting techniques in terms of a full separation of the specimen from the immersion medium, compatibility with aqueous and organic clearing media, quick specimen mounting without hydrogel embedding and their applicability for multiple-view imaging and automated image segmentation. Additionally, we show that ultra-thin FEP foil cuvettes are suitable for seeding and growing organoids over a time period of at least ten days. The new cuvettes allow the fixation and staining of specimens inside the holder, preserving the delicate morphology of e.g. fragile, mono-layered three-dimensional organoids.
Diploid transgenic organisms are either hemi- or homozygous. Genetic assays are, therefore, required to identify the genotype. Our AGameOfClones vector concept uses two clearly distinguishable transformation markers embedded in interweaved, but incompatible Lox site pairs. Cre-mediated recombination leads to hemizygous individuals that carry only one marker. In the following generation, heterozygous descendants are identified by the presence of both markers and produce homozygous progeny that are selected by the lack of one marker. We prove our concept in Tribolium castaneum by systematically creating multiple functional homozygous transgenic lines suitable for long-term fluorescence live imaging. Our approach saves resources and simplifies transgenic organism handling. Since the concept relies on the universal Cre-Lox system, it is expected to work in all diploid model organisms, for example, insects, zebrafish, rodents and plants. With appropriate adaptions, it can be used in knock-out assays to preselect homozygous individuals and thus minimize the number of wasted animals.