Refine
Document Type
- Article (4)
Language
- English (4)
Has Fulltext
- yes (4)
Is part of the Bibliography
- no (4)
Keywords
Institute
Visual search in natural scenes is a complex task relying on peripheral vision to detect potential targets and central vision to verify them. The segregation of the visual fields has been particularly established by on-screen experiments. We conducted a gaze-contingent experiment in virtual reality in order to test how the perceived roles of central and peripheral visions translated to more natural settings. The use of everyday scenes in virtual reality allowed us to study visual attention by implementing a fairly ecological protocol that cannot be implemented in the real world. Central or peripheral vision was masked during visual search, with target objects selected according to scene semantic rules. Analyzing the resulting search behavior, we found that target objects that were not spatially constrained to a probable location within the scene impacted search measures negatively. Our results diverge from on-screen studies in that search performances were only slightly affected by central vision loss. In particular, a central mask did not impact verification times when the target was grammatically constrained to an anchor object. Our findings demonstrates that the role of central vision (up to 6 degrees of eccentricities) in identifying objects in natural scenes seems to be minor, while the role of peripheral preprocessing of targets in immersive real-world searches may have been underestimated by on-screen experiments.
Central and peripheral fields of view extract information of different quality and serve different roles during visual tasks. Past research has studied this dichotomy on-screen in conditions remote from natural situations where the scene would be omnidirectional and the entire field of view could be of use. In this study, we had participants looking for objects in simulated everyday rooms in virtual reality. By implementing a gaze-contingent protocol we masked central or peripheral vision (masks of 6 deg. of radius) during trials. We analyzed the impact of vision loss on visuo-motor variables related to fixation (duration) and saccades (amplitude and relative directions). An important novelty is that we segregated eye, head and the general gaze movements in our analyses. Additionally, we studied these measures after separating trials into two search phases (scanning and verification). Our results generally replicate past on-screen literature and teach about the role of eye and head movements. We showed that the scanning phase is dominated by short fixations and long saccades to explore, and the verification phase by long fixations and short saccades to analyze. One finding indicates that eye movements are strongly driven by visual stimulation, while head movements serve a higher behavioral goal of exploring omnidirectional scenes. Moreover, losing central vision has a smaller impact than reported on-screen, hinting at the importance of peripheral scene processing for visual search with an extended field of view. Our findings provide more information concerning how knowledge gathered on-screen may transfer to more natural conditions, and attest to the experimental usefulness of eye tracking in virtual reality.
We wish to make the following correction to the published paper 'Effects of Transient Loss of Vision on Head and Eye Movements during Visual Search in a Virtual Environment'. We have identified a flaw in the implementation of a latency mitigation strategy for our gaze-contingent protocol written in Unity3D. As a result, the maximum latency is now estimated to be 30 ms instead of 15 ms, which should not affect any of the results originally published but should be noted for further reference.
Virtual reality (VR) headsets offer a large and immersive workspace for displaying visualizations with stereoscopic vision, as compared to traditional environments with monitors or printouts. The controllers for these devices further allow direct three-dimensional interaction with the virtual environment. In this paper, we make use of these advantages to implement a novel multiple and coordinated view (MCV) system in the form of a vertical stack, showing tilted layers of geospatial data. In a formal study based on a use-case from urbanism that requires cross-referencing four layers of geospatial urban data, we compared it against more conventional systems similarly implemented in VR: a simpler grid of layers, and one map that allows for switching between layers. Performance and oculometric analyses showed a slight advantage of the two spatial-multiplexing methods (the grid or the stack) over the temporal multiplexing in blitting. Subgrouping the participants based on their preferences, characteristics, and behavior allowed a more nuanced analysis, allowing us to establish links between e.g., saccadic information, experience with video games, and preferred system. In conclusion, we found that none of the three systems are optimal and a choice of different MCV systems should be provided in order to optimally engage users.