Refine
Year of publication
Document Type
- Article (29)
- Conference Proceeding (3)
- Doctoral Thesis (1)
- Preprint (1)
Has Fulltext
- yes (34)
Is part of the Bibliography
- no (34)
Keywords
- polypharmacology (4)
- soluble epoxide hydrolase (3)
- PPARγ (2)
- Virtual Screening (2)
- allostery (2)
- farnesoid X receptor (2)
- non-alcoholic steatohepatitis (2)
- 3T3-L1 mouse fibroblasts (1)
- 5-lipoxygenase (1)
- AGMO (1)
Institute
- Biochemie und Chemie (17)
- Pharmazie (13)
- Biochemie, Chemie und Pharmazie (7)
- Medizin (6)
- Biowissenschaften (5)
- Zentrum für Arzneimittelforschung, Entwicklung und Sicherheit (ZAFES) (2)
- Buchmann Institut für Molekulare Lebenswissenschaften (BMLS) (1)
- Georg-Speyer-Haus (1)
- Zentrum für Biomolekulare Magnetische Resonanz (BMRZ) (1)
The nuclear farnesoid X receptor (FXR) and the enzyme soluble epoxide hydrolase (sEH) are validated molecular targets to treat metabolic disorders such as non‐alcoholic steatohepatitis (NASH). Their simultaneous modulation in vivo has demonstrated a triad of anti‐NASH effects and thus may generate synergistic efficacy. Here we report dual FXR activators/sEH inhibitors derived from the anti‐asthma drug Zafirlukast. Systematic structural optimization of the scaffold has produced favorable dual potency on FXR and sEH while depleting the original cysteinyl leukotriene receptor antagonism of the lead drug. The resulting polypharmacological activity profile holds promise in the treatment of liver‐related metabolic diseases.
Diversity-oriented synthesis (DOS) is a rich source for novel lead structures in Medicinal Chemistry. In this study, we present a DOS-compatible method for synthesis of compounds bearing a free thiol moiety. The procedure relies on Rh(II)-catalyzed coupling of dithiols to diazo building blocks. The synthetized library was probed against metallo-β-lactamases (MBLs) NDM-1 and VIM-1. Biochemical and biological evaluation led to identification of novel potent MBL inhibitors with antibiotic adjuvant activity.
Over the past two decades the “one drug – one target – one disease” concept became the prevalent paradigm in drug discovery. The main idea of this approach is the identification of a single protein target whose inhibition leads to a successful treatment of the examined disease. The predominant assumption is that highly selective ligands would avoid unwanted side effects caused by binding to secondary non-therapeutic targets. In recent years the results of post-genomic and network biology showed that proteins rarely act in isolated systems but rather as a part of a highly connected network [1]. In addition this connectivity leads to more robust systems that cannot be interfered by the inhibition of a single target of that network and consequently might not lead to the desired therapeutic effect [2]. Furthermore studies prove that robust systems are rather affected by weak inhibitions of several parts than by a complete inhibition of a single selected element of that system [3]. Therefore there is an increasing interest in developing drugs that take effect on multiple targets simultaneously but is concurrently a great challenge for medicinal chemists. There has to be a sufficient activity on each target as well as an adequate pharmacokinetic profile [4]. Early design strategies tried to link the pharmacophors of known inhibitors, however these methods often lead to high molecular weight and low ligand efficacy. We present a new rational approach based on a retrosynthetic combinatorial analysis procedure [5] on approved ligands of multiple targets. These RECAP fragments are used to design a large combinatorial library containing molecules featuring chemical properties of each ligand class. The molecules are further validated by machine learning models, like random forests and self-organizing maps, regarding their activity on the targets of interest.
Gout is the most common arthritic disease in human but was long neglected and therapeutic options are not satisfying. However, with the recent approval of the urate transporter inhibitor lesinurad, gout treatment has experienced a major innovation. Here we show that lesinurad possesses considerable modulatory potency on peroxisome proliferator-activated receptor γ (PPARγ). Since gout has a strong association with metabolic diseases such as type 2 diabetes, this side-activity appears as very valuable contributing factor to the clinical efficacy profile of lesinurad. Importantly, despite robustly activating PPARγ in vitro, lesinurad lacked adipogenic activity, which seems due to differential coactivator recruitment and is characterized as selective PPARγ modulator (sPPARγM).
The prediction of protein–ligand interactions and their corresponding binding free energy is a challenging task in structure-based drug design and related applications. Docking and scoring is broadly used to propose the binding mode and underlying interactions as well as to provide a measure for ligand affinity or differentiate between active and inactive ligands. Various studies have revealed that most docking software packages reliably predict the binding mode, although scoring remains a challenge. Here, a diverse benchmark data set of 99 matched molecular pairs (3D-MMPs) with experimentally determined X-ray structures and corresponding binding affinities is introduced. This data set was used to study the predictive power of 13 commonly used scoring functions to demonstrate the applicability of the 3D-MMP data set as a valuable tool for benchmarking scoring functions.
Die Komplementarität der molekularen Oberflächen und der Pharmakophorpunkte ist ein verbreiteter Konzept im rechnergestützen Moleküldesign. Diesem Konzept folgend wurde die Software SQUIRREL neu entwickelt und in der Programmiersprache Java implemetiert. Die Software generiert die Vorschläge für den bioisosteren Ersatz von Molekülen und Molekülfragmenten. SQUIRREL kombiniert Oberflächen- und Pharmakophoreigenschaften bioaktiver Substanzen und kann im virtuellen Screening und fragment-basierten de novo Design eingesetzt werden. In einer prospektiven Studie wurde SQUIRREL verwendet, um neue selektive PPARalpha-Agonisten aus einer kommerziellen Moleküldatenbank zu identifizieren. Die Software lieferte eine potente Substanz (EC50 = 44 nM) mit über 100facher Selektivität gegenüber PPARgamma. In einer zweiten Studie wurde eine Leitstruktur de novo generiert und synthetisiert. Als Ausgangstruktur diente der bekannte PPARalpha-Agonist GW590735. Während des Designvorgangs wurden zwei Teilstrukturen, die für die Aktivität von GW590735 verantwortlich sind, durch bioisostere Gruppen ersetzt, die von SQUIRRELnovo vorgeschlagen wurden. Die neue Leitstruktur aktiviert PPARalpha in einem zellbasierten Reportergen-Testsystem bei einem EC50 von 0.51 µM.
We developed the Pharmacophore Alignment Search Tool (PhAST), a text-based technique for rapid hit and lead structure searching in large compound databases. For each molecule, a two-dimensional graph of potential pharmacophoric points (PPPs) is created, which has an identical topology as the original molecule with implicit hydrogen atoms. Each vertex is coloured by a symbol representing the corresponding PPP. The vertices of the graph are canonically labelled. The symbols associated with the vertices are combined to a so-called PhAST-Sequence beginning with the vertex with the lowest canonical label. Due to the canonical labelling the created PhAST-Sequence is characteristic for each molecule. For similarity assessment, PhAST-Sequences are compared using the sequence identity in their global pairwise alignment. The alignment score lies between 0 (no similarity) and 1 (identical PhAST-Sequences). In order to use global pairwise sequence alignment, a score matrix for pharmacophoric symbols was developed and gap penalties were optimized. PhAST performed comparably and sometimes superior to other similarity search tools (CATS2D, MOE pharmacophore quadruples) in retrospective virtual screenings using the COBRA collection of drugs and lead structures. Most importantly, the PhAST alignment technique allows for the computation of significance estimates that help prioritize a virtual hit list.
Shape complementarity is a compulsory condition for molecular recognition. In our 3D ligand-based virtual screening approach called SQUIRREL, we combine shape-based rigid body alignment with fuzzy pharmacophore scoring. Retrospective validation studies demonstrate the superiority of methods which combine both shape and pharmacophore information on the family of peroxisome proliferator-activated receptors (PPARs). We demonstrate the real-life applicability of SQUIRREL by a prospective virtual screening study, where a potent PPARalpha agonist with an EC50 of 44 nM and 100-fold selectivity against PPARgamma has been identified...
Two methods for the fast, fragment-based combinatorial molecule assembly were developed. The software COLIBREE® (Combinatorial Library Breeding) generates candidate structures from scratch, based on stochastic optimization [1]. Result structures of a COLIBREE design run are based on a fixed scaffold and variable linkers and side-chains. Linkers representing virtual chemical reactions and side-chain building blocks obtained from pseudo-retrosynthetic dissection of large compound databases are exchanged during optimization. The process of molecule design employs a discrete version of Particle Swarm Optimization (PSO) [2]. Assembled compounds are scored according to their similarity to known reference ligands. Distance to reference molecules is computed in the space of the topological pharmacophore descriptor CATS [3]. In a case study, the approach was applied to the de novo design of potential peroxisome proliferator-activated receptor (PPAR gamma) selective agonists. In a second approach, we developed the formal grammar Reaction-MQL [4] for the in silico representation and application of chemical reactions. Chemical transformation schemes are defined by functional groups participating in known organic reactions. The substructures are specified by the linear Molecular Query Language (MQL) [5]. The developed software package contains a parser for Reaction-MQL-expressions and enables users to design, test and virtually apply chemical reactions. The program has already been used to create combinatorial libraries for virtual screening studies. It was also applied in fragmentation studies with different sets of retrosynthetic reactions and various compound libraries.
There is a renewed interest in pseudoreceptor models which enable computational chemists to bridge the gap of ligand- and receptor-based drug design. We developed a pseudoreceptor model for the histamine H4 receptor (H4R) based on five potent antagonists representing different chemotypes. Here we present the selection of potential ligand binding pockets that occur during molecular dynamics (MD) simulations of a homology-based receptor model. We present a method for prioritizing receptor models according to their match with the consensus ligand-binding mode represented by the pseudoreceptor. In this way, ligand information can be transferred to receptor-based modelling. We use Geometric Hashing to match three-dimensional points in Cartesion space. This allows for the rapid translation- and rotation-free comparison of atom coordinates, which also permits partial matching. The only prerequisite is a hash table, which uses distance triplets as hash keys. Each time a distance triplet occurring in the candidate point set which corresponds to an existing key, the match is represented by a vote of the respective key. Finally, the global match of both point sets can be easily extracted by selection of voted distance triplets. The results revealed a preferred ligand-binding pocket in H4R, which would not have been identified using an unrefined homology model of the protein. The key idea was to rely on ligand information by pseudoreceptor modelling.