Refine
Language
- English (34)
Has Fulltext
- yes (34)
Is part of the Bibliography
- no (34)
Keywords
- Heavy-ion collisions (4)
- Beam Energy Scan (2)
- Chiral Magnetic Effect (2)
- B-slope (1)
- Beam energy scan (1)
- Charm quark spatial diffusion coefficient (1)
- Chiral magnetic effect (1)
- Coalescence (1)
- Collectivity (1)
- Correlation (1)
Institute
The longitudinal and transverse spin transfers to Λ (Λ¯¯¯¯) hyperons in polarized proton-proton collisions are expected to be sensitive to the helicity and transversity distributions, respectively, of (anti-)strange quarks in the proton, and to the corresponding polarized fragmentation functions. We report improved measurements of the longitudinal spin transfer coefficient, DLL, and the transverse spin transfer coefficient, DTT, to Λ and Λ¯¯¯¯ in polarized proton-proton collisions at s√ = 200 GeV by the STAR experiment at RHIC. The data set includes longitudinally polarized proton-proton collisions with an integrated luminosity of 52 pb−1, and transversely polarized proton-proton collisions with a similar integrated luminosity. Both data sets have about twice the statistics of previous results and cover a kinematic range of |ηΛ(Λ¯¯¯¯)| < 1.2 and transverse momentum pT,Λ(Λ¯¯¯¯) up to 8 GeV/c. We also report the first measurements of the hyperon spin transfer coefficients DLL and DTT as a function of the fractional jet momentum z carried by the hyperon, which can provide more direct constraints on the
We report the beam energy and collision centrality dependence of fifth and sixth order cumulants (C5, C6) and factorial cumulants (κ5, κ6) of net-proton and proton distributions, from sNN−−−−√=3−200 GeV Au+Au collisions at RHIC. The net-proton cumulant ratios generally follow the hierarchy expected from QCD thermodynamics, except for the case of collisions at sNN−−−−√ = 3 GeV. C6/C2 for 0-40\% centrality collisions is increasingly negative with decreasing sNN−−−−√, while it is positive for the lowest sNN−−−−√ studied. These observed negative signs are consistent with QCD calculations (at baryon chemical potential, μB≤ 110 MeV) that include a crossover quark-hadron transition. In addition, for sNN−−−−√≥ 11.5 GeV, the measured proton κn, within uncertainties, does not support the two-component shape of proton distributions that would be expected from a first-order phase transition. Taken in combination, the hyper-order proton number fluctuations suggest that the structure of QCD matter at high baryon density, μB∼750 MeV (sNN−−−−√ = 3 GeV) is starkly different from those at vanishing μB∼20MeV (sNN−−−−√ = 200 GeV and higher).
A decisive experimental test of the Chiral Magnetic Effect (CME) is considered one of the major scientific goals at the Relativistic Heavy-Ion Collider (RHIC) towards understanding the nontrivial topological fluctuations of the Quantum Chromodynamics vacuum. In heavy-ion collisions, the CME is expected to result in a charge separation phenomenon across the reaction plane, whose strength could be strongly energy dependent. The previous CME searches have been focused on top RHIC energy collisions. In this Letter, we present a low energy search for the CME in Au+Au collisions at sNN−−−√=27 GeV. We measure elliptic flow scaled charge-dependent correlators relative to the event planes that are defined at both mid-rapidity |η|<1.0 and at forward rapidity 2.1<|η|<5.1. We compare the results based on the directed flow plane (Ψ1) at forward rapidity and the elliptic flow plane (Ψ2) at both central and forward rapidity. The CME scenario is expected to result in a larger correlation relative to Ψ1 than to Ψ2, while a flow driven background scenario would lead to a consistent result for both event planes. In 10-50\% centrality, results using three different event planes are found to be consistent within experimental uncertainties, suggesting a flow driven background scenario dominating the measurement. We obtain an upper limit on the deviation from a flow driven background scenario at the 95\% confidence level. This work opens up a possible road map towards future CME search with the high statistics data from the RHIC Beam Energy Scan Phase-II.
We report on measurements of sequential Υ suppression in Au+Au collisions at sNN−−−√ = 200 GeV with the STAR detector at the Relativistic Heavy Ion Collider (RHIC) through both the dielectron and dimuon decay channels. In the 0-60% centrality class, the nuclear modification factors (RAA), which quantify the level of yield suppression in heavy-ion collisions compared to p+p collisions, for Υ(1S) and Υ(2S) are 0.40±0.03 (stat.)±0.03 (sys.)±0.09 (norm.) and 0.26±0.08 (stat.)±0.02 (sys.)±0.06 (norm.), respectively, while the upper limit of the Υ(3S) RAA is 0.17 at a 95% confidence level. This provides experimental evidence that the Υ(3S) is significantly more suppressed than the Υ(1S) at RHIC. The level of suppression for Υ(1S) is comparable to that observed at the much higher collision energy at the Large Hadron Collider. These results point to the creation of a medium at RHIC whose temperature is sufficiently high to strongly suppress excited Υ states.
We report a new measurement of the production of electrons from open heavy-flavor hadron decays (HFEs) at mid-rapidity (|y| < 0.7) in Au+Au collisions at √sNN = 200 GeV. Invariant yields of HFEs are measured for the transverse momentum range of 3.5 < pT < 9 GeV/c in various configurations of the collision geometry. The HFE yields in head-on Au+Au collisions are suppressed by approximately a factor of 2 compared to that in p + p collisions scaled by the average number of binary collisions, indicating strong interactions between heavy quarks and the hot and dense medium created in heavy-ion collisions. Comparison of these results with models provides additional tests of theoretical calculations of heavy quark energy loss in the quark-gluon plasma.
We report a new measurement of the production of electrons from open heavy-flavor hadron decays (HFEs) at mid-rapidity (|y|< 0.7) in Au+Au collisions at sNN−−−√=200 GeV. Invariant yields of HFEs are measured for the transverse momentum range of 3.5<pT<9 GeV/c in various configurations of the collision geometry. The HFE yields in head-on Au+Au collisions are suppressed by approximately a factor of 2 compared to that in p+p collisions scaled by the average number of binary collisions, indicating strong interactions between heavy quarks and the hot and dense medium created in heavy-ion collisions. Comparison of these results with models provides additional tests of theoretical calculations of heavy quark energy loss in the quark-gluon plasma.
We report a new measurement of the production of electrons from open heavy-flavor hadron decays (HFEs) at mid-rapidity (|y|< 0.7) in Au+Au collisions at sNN−−−√=200 GeV. Invariant yields of HFEs are measured for the transverse momentum range of 3.5<pT<9 GeV/c in various configurations of the collision geometry. The HFE yields in head-on Au+Au collisions are suppressed by approximately a factor of 2 compared to that in p+p collisions scaled by the average number of binary collisions, indicating strong interactions between heavy quarks and the hot and dense medium created in heavy-ion collisions. Comparison of these results with models provides additional tests of theoretical calculations of heavy quark energy loss in the quark-gluon plasma.
Density fluctuations near the QCD critical point can be probed via an intermittency analysis in relativistic heavy-ion collisions. We report the first measurement of intermittency in Au+Au collisions at sNN−−−√ = 7.7-200 GeV measured by the STAR experiment at the Relativistic Heavy Ion Collider (RHIC). The scaled factorial moments of identified charged hadrons are analyzed at mid-rapidity and within the transverse momentum phase space. We observe a power-law behavior of scaled factorial moments in Au+Au collisions and a decrease in the extracted scaling exponent (ν) from peripheral to central collisions. The ν is consistent with a constant for different collisions energies in the mid-central (10-40\%) collisions. Moreover, the ν in the 0-5\% most central Au+Au collisions exhibits a non-monotonic energy dependence that reaches a possible minimum around sNN−−−√ = 27 GeV. The physics implications on the QCD phase structure are discussed.
The longitudinal and transverse spin transfers to Λ (Λ¯¯¯¯) hyperons in polarized proton-proton collisions are expected to be sensitive to the helicity and transversity distributions, respectively, of (anti-)strange quarks in the proton, and to the corresponding polarized fragmentation functions. We report improved measurements of the longitudinal spin transfer coefficient, DLL, and the transverse spin transfer coefficient, DTT, to Λ and Λ¯¯¯¯ in polarized proton-proton collisions at s√ = 200 GeV by the STAR experiment at RHIC. The data set includes longitudinally polarized proton-proton collisions with an integrated luminosity of 52 pb−1, and transversely polarized proton-proton collisions with a similar integrated luminosity. Both data sets have about twice the statistics of previous results and cover a kinematic range of |ηΛ(Λ¯¯¯¯)| < 1.2 and transverse momentum pT,Λ(Λ¯¯¯¯) up to 8 GeV/c. We also report the first measurements of the hyperon spin transfer coefficients DLL and DTT as a function of the fractional jet momentum z carried by the hyperon, which can provide more direct constraints on the polarized fragmentation functions.