Refine
Year of publication
Language
- English (663)
Has Fulltext
- yes (663)
Is part of the Bibliography
- no (663)
Keywords
- BESIII (20)
- e +-e − Experiments (20)
- Branching fraction (15)
- Particle and Resonance Production (9)
- Charm Physics (6)
- Quarkonium (6)
- Spectroscopy (6)
- Hadronic decays (5)
- QCD (5)
- Branching fractions (4)
Institute
- Physik (589)
- Frankfurt Institute for Advanced Studies (FIAS) (69)
- Biochemie und Chemie (1)
- ELEMENTS (1)
- Georg-Speyer-Haus (1)
- Informatik (1)
- Medizin (1)
Using (2712.4±14.3)×106 ψ(3686) events collected with the BESIII detector operating at the BEPCII collider, we search for the hadronic transition hc→π+π−J/ψ via ψ(3686)→π0hc. No significant signal is observed. We set the most stringent upper limits to date on the branching fractions B(ψ(3686)→π0hc)×B(hc→π+π−J/ψ) and B(hc→π+π−J/ψ) at the 90% confidence level, which are determined to be 6.7×10−7 and 9.4×10−4, respectively.
Using 2.93 fb−1 of 𝑒+𝑒− collision data taken at a center-of-mass energy of 3.773 GeV with the BESIII detector, we report the first measurements of the absolute branching fractions of 14 hadronic 𝐷0(+) decays to exclusive final states with an 𝜂, e.g., 𝐷0→𝐾−𝜋+𝜂, 𝐾0𝑆𝜋0𝜂, 𝐾+𝐾−𝜂, 𝐾0𝑆𝐾0𝑆𝜂, 𝐾−𝜋+𝜋0𝜂, 𝐾0𝑆𝜋+𝜋−𝜂, 𝐾0𝑆𝜋0𝜋0𝜂, and 𝜋+𝜋−𝜋0𝜂; 𝐷+→𝐾0𝑆𝜋+𝜂, 𝐾0𝑆𝐾+𝜂, 𝐾−𝜋+𝜋+𝜂, 𝐾0𝑆𝜋+𝜋0𝜂, 𝜋+𝜋+𝜋−𝜂, and 𝜋+𝜋0𝜋0𝜂. Among these decays, the 𝐷0→𝐾−𝜋+𝜂 and 𝐷+→𝐾0 𝑆𝜋+𝜂 decays have the largest branching fractions, which are ℬ(𝐷0→𝐾−𝜋+𝜂) = (1.853±0.025stat±0.031syst)% and ℬ(𝐷+→𝐾0𝑆𝜋+𝜂) = (1.309±0.037stat±0.031syst)%, respectively. The charge-parity asymmetries for the six decays with highest event yields are determined, and no statistically significant charge-parity violation is found.
Using 2.93 fb−1 of e+e− collision data collected with the BESIII detector at the center-of-mass energy of 3.773 GeV, we investigate the semileptonic decays D+→π+π−ℓ+νℓ (ℓ=e and μ). The D+→f0(500)μ+νμ decay is observed for the first time. By analyzing simultaneously the differential decay rates of D+→f0(500)μ+νμ and D+→f0(500)e+νe in different ℓ+νℓ four-momentum transfer intervals, the product of the relevant hadronic form factor ff0+(0) and the magnitude of the c→d Cabibbo-Kobayashi-Maskawa matrix element |Vcd| is determined to be ff0+(0)|Vcd|=0.0787±0.0060stat±0.0033syst for the first time. With the input of |Vcd| from the global fit in the standard model, we determine ff0+(0)=0.350±0.027stat±0.015syst. The absolute branching fractions of D+→f0(500)(π+π−)μ+νμ and D+→ρ0(π+π−)μ+νμ are determined as (0.72±0.13stat±0.10syst)×10−3 and (1.64±0.13stat±0.11syst)×10−3. Combining these results with those of previous BESIII measurements on their semielectronic counterparts from the same data sample, we test lepton flavor universality by measuring the branching fraction ratios BD+→ρ0μ+νμ/BD+→ρ0e+νe = 0.88±0.10 and BD+→f0(500)μ+νμ/BD+→f0(500)e+νe = 1.14±0.28, which are compatible with the standard model expectation.
Using 2.93 fb−1 of e+e− collision data collected with the BESIII detector at the center-of-mass energy of 3.773 GeV, we investigate the semileptonic decays D+→π+π−ℓ+νℓ (ℓ=e and μ). The D+→f0(500)μ+νμ decay is observed for the first time. By analyzing simultaneously the differential decay rates of D+→f0(500)μ+νμ and D+→f0(500)e+νe in different ℓ+νℓ four-momentum transfer intervals, the product of the relevant hadronic form factor ff0+(0) and the magnitude of the c→d Cabibbo-Kobayashi-Maskawa matrix element |Vcd| is determined to be ff0+(0)|Vcd|=0.0787±0.0060stat±0.0033syst for the first time. With the input of |Vcd| from the global fit in the standard model, we determine ff0+(0)=0.350±0.027stat±0.015syst. The absolute branching fractions of D+→f0(500)(π+π−)μ+νμ and D+→ρ0(π+π−)μ+νμ are determined as (0.72±0.13stat±0.10syst)×10−3 and (1.64±0.13stat±0.11syst)×10−3. Combining these results with those of previous BESIII measurements on their semielectronic counterparts from the same data sample, we test lepton flavor universality by measuring the branching fraction ratios BD+→ρ0μ+νμ/BD+→ρ0e+νe=0.88±0.10 and BD+→f0(500)μ+νμ/BD+→f0(500)e+νe = 1.14±0.28, which are compatible with the standard model expectation.
The Born cross sections and effective form factors for process 𝑒+𝑒−→Ξ−¯Ξ+ are measured at eight center-of-mass energies between 2.644 and 3.080 GeV, using a total integrated luminosity of 363.9 pb−1 𝑒+𝑒− collision data collected with the BESIII detector at BEPCII. After performing a fit to the Born cross section of 𝑒+𝑒−→Ξ−¯Ξ+, no significant threshold effect is observed.
The Born cross sections for the process e+e−→η′π+π− at different center-of-mass energies between 2.00 and 3.08 GeV are reported with improved precision from an analysis of data samples collected with the BESIII detector operating at the BEPCII storage ring. An obvious structure is observed in the Born cross section line shape. Fit as a Breit-Wigner resonance, it has a statistical significance of 6.3σ and a mass and width of M=(2111±43±25)~MeV/c2 and Γ=(135±34±30)~MeV, where the uncertainties are statistical and systematic, respectively. These measured resonance parameters agree with the measurements of BABAR in e+e−→η′π+π− and BESIII in e+e−→ωπ0 within two standard deviations.
Using 2.93 fb−1 of 𝑒+𝑒− collision data collected at a center-of-mass energy of 3.773 GeV with the BESIII detector, the first observation of the doubly Cabibbo-suppressed decay 𝐷+→𝐾+𝜋+𝜋−𝜋0 is reported. After removing decays that contain narrow intermediate resonances, including 𝐷+→𝐾+𝜂, 𝐷+→𝐾+𝜔, and 𝐷+→𝐾+𝜙, the branching fraction of the decay 𝐷+→𝐾+𝜋+𝜋−𝜋0 is measured to be (1.13±0.08stat±0.03syst)×10−3. The ratio of branching fractions of 𝐷+→𝐾+𝜋+𝜋−𝜋0 over 𝐷+→𝐾−𝜋+𝜋+𝜋0 is found to be (1.81±0.15)%, which corresponds to (6.28±0.52)tan4𝜃𝐶, where 𝜃𝐶 is the Cabibbo mixing angle. This ratio is significantly larger than the corresponding ratios for other doubly Cabibbo-suppressed decays. The asymmetry of the branching fractions of charge-conjugated decays 𝐷±→𝐾±𝜋±𝜋∓𝜋0 is also determined, and no evidence for 𝐶𝑃 violation is found. In addition, the first evidence for the 𝐷+→𝐾+𝜔 decay, with a statistical significance of 3.3𝜎, is presented and the branching fraction is measured to be ℬ(𝐷+→𝐾+𝜔) = (5.7+2.5−2.1stat±0.2syst)×10−5.
Using 2.93 fb−1 of 𝑒+𝑒− annihilation data collected at a center-of-mass energy √𝑠=3.773 GeV with the BESIII detector operating at the BEPCII collider, we search for the semileptonic 𝐷0(+) decays into a 𝑏1(1235)−(0) axial-vector meson for the first time. No significant signal is observed for either charge combination. The upper limits on the product branching fractions are ℬ𝐷0→𝑏1(1235)−𝑒+𝜈𝑒·ℬ𝑏1(1235) −→ 𝜔𝜋−<1.12×10−4 and ℬ𝐷+→𝑏1(1235)0𝑒+𝜈𝑒·ℬ𝑏1(1235)0→𝜔𝜋0<1.75×10−4 at the 90% confidence level.
The rare decay 𝜂′→𝜋+𝜋−𝑒+𝑒− is studied using a sample of 1.3×109 𝐽/𝜓 events collected with the BESIII detector at BEPCII in 2009 and 2012. The branching fraction is measured with improved precision to be (2.42±0.05stat±0.08syst)×10−3. Due to the inclusion of new data, this result supersedes the last BESIII result on this branching fraction. In addition, the 𝐶𝑃-violating asymmetry in the angle between the decay planes of the 𝜋+𝜋−-pair and the 𝑒+𝑒−-pair is investigated. A measurable value would indicate physics beyond the standard model; the result is 𝒜𝐶𝑃=(2.9±3.7stat±1.1syst)%, which is consistent with the standard model expectation of no 𝐶𝑃-violation. The precision is comparable to the asymmetry measurement in the 𝐾0𝐿→𝜋+𝜋−𝑒+𝑒− decay where the observed (14±2)% effect is driven by a standard model mechanism.