Refine
Document Type
- Article (6)
- Conference Proceeding (4)
Language
- English (10)
Has Fulltext
- yes (10)
Is part of the Bibliography
- no (10)
Keywords
- AMPA (1)
- CAPON (1)
- Depression (1)
- GeneMANIA (1)
- Glutamate (1)
- K-homology RNA-binding domain (1)
- MDD (1)
- Molecular neuroscience (1)
- NMDA (1)
- NOS-I (1)
Institute
- Medizin (10)
- Biowissenschaften (3)
Neurons of the mammalian neocortex are produced by proliferating cells located in the ventricular zone (VZ) lining the lateral ventricles. This is a complex and sequential process, requiring precise control of cell cycle progression, fate commitment and differentiation. We have analyzed publicly available databases from mouse and human to identify candidate genes that are potentially involved in regulating early neocortical development and neurogenesis. We used a mouse in situ hybridization dataset (The Allen Institute for Brain Science) to identify 13 genes (Cdon, Celsr1, Dbi, E2f5, Eomes, Hmgn2, Neurog2, Notch1, Pcnt, Sox3, Ssrp1, Tead2, Tgif2) with high correlation of expression in the proliferating cells of the VZ of the neocortex at early stages of development (E15.5). We generated a similar human brain network using microarray and RNA-seq data (BrainSpan Atlas) and identified 407 genes with high expression in the developing human VZ and subventricular zone (SVZ) at 8–9 post-conception weeks. Seven of the human genes were also present in the mouse VZ network. The human and mouse networks were extended using available genetic and proteomic datasets through GeneMANIA. A gene ontology search of the mouse and human networks indicated that many of the genes are involved in the cell cycle, DNA replication, mitosis and transcriptional regulation. The reported involvement of Cdon, Celsr1, Dbi, Eomes, Neurog2, Notch1, Pcnt, Sox3, Tead2, and Tgif2 in neural development or diseases resulting from the disruption of neurogenesis validates these candidate genes. Taken together, our knowledge-based discovery method has validated the involvement of many genes already known to be involved in neocortical development and extended the potential number of genes by 100's, many of which are involved in functions related to cell proliferation but others of which are potential candidates for involvement in the regulation of neocortical development.
AMPA receptors and interacting proteins are importantly involved in mediating stress-dependent plasticity. Previously we reported that GluA1-containing AMPA receptors and their interaction with PDZ-proteins are required for the experience-dependent expression of behavioral despair in the forced swim test. However, it is unclear if the expression of GluA1-containing AMPA receptors is affected by this type of behavior. Here we investigated in wild type mice, whether hippocampal gene or protein levels of GluA1 or associated PDZ proteins is altered following forced swim stress. We show that expression of Dlg4 (the gene coding for PSD-95) was strongly reduced after two days of forced swimming. In contrast, levels of Dlg1, Gria1, and Gria2 (coding for SAP97, GluA1, and GluA2 respectively) were not affected after one or two days of forced swimming. The changes in gene expression largely did not translate to the protein level. These findings indicate a limited acute effect of forced swim stress on the expression of the investigated targets and suggest that the acute involvement of GluA1-containing AMPA receptors tor forced swim behavior is a result of non-genomic mechanisms.
Objective: The DIRAS2 gene is associated with ADHD, but its function is largely unknown. Thus, we aimed to explore the genes and molecular pathways affected by DIRAS2. Method: Using short hairpin RNAs, we downregulated Diras2 in murine hippocampal primary cells. Gene expression was analyzed by microarray and affected pathways were identified. We used quantitative real-time polymerase chain reaction (qPCR) to confirm expression changes and analyzed enrichment of differentially expressed genes in an ADHD GWAS (genome-wide association studies) sample. Results: Diras2 knockdown altered expression of 1,612 genes, which were enriched for biological processes involved in neurodevelopment. Expression changes were confirmed for 33 out of 88 selected genes. These 33 genes showed significant enrichment in ADHD patients in a gene-set-based analysis. Conclusion: Our findings show that Diras2 affects numerous genes and thus molecular pathways that are relevant for neurodevelopmental processes. These findings may further support the hypothesis that DIRAS2 is linked to etiological processes underlying ADHD. (J. of Att. Dis. 2021; 25(4) 572-583).
Spinocerebellar ataxia type 2 (SCA2) is caused by polyglutamine expansion in Ataxin-2 (ATXN2). This factor binds RNA/proteins to modify metabolism after stress, and to control calcium (Ca2+) homeostasis after stimuli. Cerebellar ataxias and corticospinal motor neuron degeneration are determined by gain/loss in ATXN2 function, so we aimed to identify key molecules in this atrophic process, as potential disease progression markers. Our Atxn2-CAG100-Knock-In mouse faithfully models features observed in patients at pre-onset, early and terminal stages. Here, its cerebellar global RNA profiling revealed downregulation of signaling cascades to precede motor deficits. Validation work at mRNA/protein level defined alterations that were independent of constant physiological ATXN2 functions, but specific for RNA/aggregation toxicity, and progressive across the short lifespan. The earliest changes were detected at three months among Ca2+ channels/transporters (Itpr1, Ryr3, Atp2a2, Atp2a3, Trpc3), IP3 metabolism (Plcg1, Inpp5a, Itpka), and Ca2+-Calmodulin dependent kinases (Camk2a, Camk4). CaMKIV–Sam68 control over alternative splicing of Nrxn1, an adhesion component of glutamatergic synapses between granule and Purkinje neurons, was found to be affected. Systematic screening of pre/post-synapse components, with dendrite morphology assessment, suggested early impairment of CamKIIα abundance together with the weakening of parallel fiber connectivity. These data reveal molecular changes due to ATXN2 pathology, primarily impacting excitability and communication.
Background: Nitric oxide synthase 1 adaptor protein (NOS1AP; previously named CAPON) is linked to the glutamatergic postsynaptic density through interaction with neuronal nitric oxide synthase (nNOS). NOS1AP and its interaction with nNOS have been associated with several mental disorders. Despite the high levels of NOS1AP expression in the hippocampus and the relevance of this brain region in glutamatergic signalling as well as mental disorders, a potential role of hippocampal NOS1AP in the pathophysiology of these disorders has not been investigated yet.
Methods: To uncover the function of NOS1AP in hippocampus, we made use of recombinant adeno-associated viruses to overexpress murine full-length NOS1AP or the NOS1AP carboxyterminus in the hippocampus of mice. We investigated these mice for changes in gene expression, neuronal morphology, and relevant behavioural phenotypes.
Findings: We found that hippocampal overexpression of NOS1AP markedly increased the interaction of nNOS with PSD-95, reduced dendritic spine density, and changed dendritic spine morphology at CA1 synapses. At the behavioural level, we observed an impairment in social memory and decreased spatial working memory capacity.
Interpretation: Our data provide a mechanistic explanation for a highly selective and specific contribution of hippocampal NOS1AP and its interaction with the glutamatergic postsynaptic density to cross-disorder pathophysiology. Our findings allude to therapeutic relevance due to the druggability of this molecule.
Changes in glutamatergic neuroplasticity has been proposed as one of the core mechanisms underlying the pathophysiology of depression. In consequence components of the glutamatergic synapse have been explored as potential targets for antidepressant treatment. The rapid antidepressant effect of the NMDA receptor antagonist ketamine and subsequent approval of its S-enantiomer (i.e. esketamine), have set the precedent for investigation into other glutamatergic rapid acting antidepressants (RAADs). In this review, we discuss the potential of the different glutamatergic targets for antidepressant treatment. We describe important clinical outcomes of several key molecules targeting components of the glutamatergic synapse and their applicability as RAADs. Specifically, here we focus on substances beyond (es)ketamine, for which meaningful data from clinical trials are available, including arketamine, esmethadone, nitrous oxide and other glutamate receptor modulators. Molecules only successful in preclinical settings and case reports/series are only marginally discussed. With this review, we aim underscore the critical role of glutamatergic modulation in advancing antidepressant therapy, thereby possibly enhancing clinical outcomes but also to reducing the burden of depression through faster therapeutic effects.