Refine
Document Type
- Article (6)
- Doctoral Thesis (1)
Has Fulltext
- yes (7)
Is part of the Bibliography
- no (7)
Keywords
- cognition (2)
- ACL rupture (1)
- Anterior cruciate ligament reconstruction (1)
- Antizipation (1)
- Athletes (1)
- Body limbs (1)
- COINS (1)
- Cohort studies (1)
- Injury (1)
- Integrated multimodal training (1)
Institute
Adapting movements rapidly to unanticipated external stimuli is paramount for athletic performance and to prevent injuries. We investigated the effects of a 4-week open-skill choice-reaction training intervention on unanticipated jump-landings. Physically active adults (n = 37; mean age 27, standard deviation 2.7 years, 16 females, 21 males) were randomly allocated to one of two interventions or a control group (CG). Participants in the two intervention groups performed a 4-week visuomotor open skill choice reaction training, one for the upper and one for the lower extremities. Before and after the intervention, two different types of countermovement jumps with landings in split stance position were performed. In the (1) pre-planned condition, we informed the participants regarding the landing position (left or right foot in front position) before the jump. In the (2) unanticipated condition, this information was displayed after take-off (350–600 ms reaction time before landing). Outcomes were landing stability [peak vertical ground reaction force (pGRF) and time to stabilization (TTS)], and landing-related decision-making quality (measured by the number of landing errors). To measure extremity-specific effects, we documented the number of correct hits during the trained drills. A two-factorial (four repeated measures: two conditions, two time factors; three groups) ANCOVA was carried out; conditions = unanticipated versus pre-planned condition, time factors = pre versus post measurement, grouping variable = intervention allocation, co-variates = jumping time and self-report arousal. The training improved performance over the intervention period (upper extremity group: mean of correct choice reaction hits during 5 s drill: +3.0 hits, 95% confidence interval: 2.2–3.9 hits; lower extremity group: +1.6 hits, 0.6–2.6 hits). For pGRF (F = 8.4, p < 0.001) and landing errors (F = 17.1, p < 0.001) repeated measures effect occurred. Significantly more landing errors occurred within the unanticipated condition for all groups and measurement days. The effect in pGRF is mostly impacted by between-condition differences in the CG. No between-group or interaction effect was seen for these outcomes: pGRF (F = 0.4, p = 0.9; F = 2.3, p = 0.1) landing errors (F = 0.5, p = 0.6; F = 2.3, p = 0.1). TTS displayed a repeated measures (F = 4.9, p < 0.001, worse values under the unanticipated condition, improvement over time) and an interaction effect (F = 2.4, p = 0.03). Healthy adults can improve their choice reaction task performance by training. As almost no transfer to unanticipated landing successfulness or movement quality occurred, the effect seems to be task-specific. Lower-extremity reactions to unanticipated stimuli may be improved by more specific training regimens.
Study design: Systematic review. Background and objectives: Preoperative neuromuscular function is predictive for knee function and return to sports (RTS) after reconstruction of the anterior cruciate ligament (ACL). The aim of this review was to examine the potential benefits of prehabilitation on pre-/postoperative objective, self-reported and RTS-specific outcomes. Methods: A systematic search was conducted within three databases. From the 1.071 studies screened, two randomized control trials (RCTs), two control trials (CTs) and two cohort studies (CS) met the inclusion criteria. Methodological quality rating adopted the PEDro- (RCT, CT) or Newcastle-Ottawa-Scale (CS). Results and conclusions: Methodological quality of the included studies was moderate (PEDro score: 6.5 ± 1.7; range 4 to 9). Two studies reported higher increases of the maximal quadriceps torque from baseline to pre-reconstruction: one study in the limb symmetry index (LSI), and one in both legs of the prehabilitation group compared to the controls. At 12-weeks post-reconstruction, one study (from two) indicated that the prehabilitation group had a lesser post-operative decline in the single-leg-hop for distance LSI (clinically meaningful). Similar findings were found in terms of quadriceps strength LSI (one study). At both pre-reconstruction (three studies) and two-year post-surgery (two studies), the prehabilitation groups reached significantly higher self-reported knee function (clinically meaningful) than the controls. RTS tended to be faster (one study). At two years post-surgery, RTS rates (one study) were higher in the prehabilitation groups. The results provide evidence for the relevance of prehabilitation prior to ACL-reconstruction to improve neuromuscular and self-reported knee function as well as RTS. More high quality confirmatory RCTs are warranted.
Introduction Current: evidence suggests that the loss of mechanoreceptors after anterior cruciate ligament (ACL) tears might be compensated by increased cortical motor planning. This occupation of cerebral resources may limit the potential to quickly adapt movements to unforeseen external stimuli in the athletic environment. To date, studies investigating such neural alterations during movement focused on simple, anticipated tasks with low ecological validity. This trial, therefore, aims to investigate the cortical and biomechanical processes associated with more sport-related and injury-related movements in ACL-reconstructed individuals.
Methods and analysis: ACL-reconstructed participants and uninjured controls will perform repetitive countermovement jumps with single leg landings. Two different conditions are to be completed: anticipated (n=35) versus unanticipated (n=35) successful landings. Under the anticipated condition, participants receive the visual information depicting the requested landing leg prior to the jump. In the unanticipated condition, this information will be provided only about 400 msec prior to landing. Neural correlates of motor planning will be measured using electroencephalography. In detail, movement-related cortical potentials, frequency spectral power and functional connectivity will be assessed. Biomechanical landing quality will be captured via a capacitive force plate. Calculated parameters encompass time to stabilisation, vertical peak ground reaction force, and centre of pressure path length. Potential systematic differences between ACL-reconstructed individuals and controls will be identified in dependence of jumping condition (anticipated/ unanticipated, injured/uninjured leg and controls) by using interference statistics. Potential associations between the cortical and biomechanical measures will be calculated by means of correlation analysis. In case of statistical significance (α<0.05.) further confounders (cofactors) will be considered.
Ethics and dissemination: The independent Ethics Committee of the University of Frankfurt (Faculty of Psychology and Sports Sciences) approved the study. Publications in peer-reviewed journals are planned. The findings will be presented at scientific conferences.
Trial status: At the time of submission of this manuscript, recruitment is ongoing.
Trial registration number: NCT03336060; Pre-results.
Hintergrund: Ein Großteil der Rupturen des vorderen Kreuzbandes (VKB) ereignet sich ohne Gegnerkontakt. Misslungene Landungen zählen zu den häufigsten kontaktlosen Verletzungsursachen, insbesondere bei Spielsportler/-innen. Im Vergleich zu vorgeplanten/antizipierten Landungen reduzieren unvorhersehbare/nicht-antizipierte Landeanforderungen, bei denen die Entscheidung für das Landebein erst in der Luft getroffen wird, die biomechanische Landestabilität. Die veränderte Landecharakteristik wird mit einem gesteigerten VKB-Ruptur-Risiko in Verbindung gebracht.
Ziele: Diese Dissertation überprüft, ob VKB-rekonstruierte (VKBR) im Vergleich zu verletzungsfreien Testpersonen (KG) eine stärkere Abnahme der Lande- und Entscheidungsqualität unter nicht-antizipierten gegenüber antizipierten Landeanforderungen (höhere nicht-antizipierte Landekosten) aufweisen. Zudem wird innerhalb beider Gruppen untersucht, inwiefern die potenziell vorhandenen nicht-antizipierten Landekosten mit spezifischen niedrigeren und höheren kognitiven Funktionen assoziiert sind. Darüber hinaus werden die erfassten kognitiven Messgrößen auf Gruppenunterschiede überprüft.
Methode: Zehn VKBR-Testpersonen (28 ± 4 Jahre, alle männlich) und 20 Kontrolltestpersonen ohne VKB-Verletzungshistorie (27 ± 4 Jahre, alle männlich) führten jeweils 70 Counter-Movement-Jumps mit einbeinigen Landungen auf eine Druckmessplatte durch. Alle Probanden absolvierten in randomisierter Reihenfolge eine antizipierte (Landung auf links oder rechts bereits vor Absprung bekannt) und eine nicht-antizipierte/-vorplanbare (visuelle Landeinformation erst nach Absprung angezeigt; etwa 360 ms vor Bodenkontakt) Landebedingung (n = 35 jeweils). Die Operationalisierung der biomechanischen Landestabilität erfolgte anhand der maximalen vertikalen Bodenreaktionskraft (peak ground reaction force, pVGRF), Stabilisationszeit (time to stabilisation, TTS), posturalen Schwankung (center of pressure, COP) sowie der Standsicherheit (Anzahl an Standfehler; Bodenberührung mit Spielbein). Die Entscheidungsqualität wurde anhand der Landefehlerzahl (Landung mit falschem Fuß oder beidfüßig) bewertet. Zur Erfassung niedrigerer (z. B. Reaktionsgeschwindigkeit, visuelle Wahrnehmung) und höherer kognitiver Funktionen (z. B. kognitive Flexibilität, Arbeitsgedächtnis, Inhibitionskontrolle) kamen Computer- sowie Papier-und-Stiftbasierte Tests zum Einsatz.
Ergebnisse: Innerhalb beider Gruppen führte die nicht-antizipierte im Vergleich zur antizipierten Landebedingung zu höheren COP-Werten (KG: p < 0,01; d=1,1; VKBR: p < 0,01; d = 1,1) sowie zu mehr Stand- (KG: p < 0,001; d = 0,9; VKBR: p < 0,05; d = 0,6) und Lande-fehlern (KG: p < 0.01; d = 1,3; VKBR: p < 0,001; d = 1,9). Keine Unterschiede zeigten sich im Hinblick auf TTS und pVGRF (p > 0,05). Weder innerhalb noch zwischen den Bedingungen differierten die beiden Gruppen in einem der erfassten Lande-/Entscheidungsparameter systematisch (p > 0,05). Innerhalb der KG war die Zunahme der COP-Schwankungen mit einer geringeren Interferenzkontrolle assoziiert (r = 0,48; p < 0,05). Eine höhere Anzahl nicht-antizipierter Landefehler (geringere Entscheidungsqualität) stand in einem signifikanten Zusammenhang (Kovariate: Flugzeit/Sprungdauer) mit einer geringeren kognitiven Flexibilitäts-/Arbeitsgedächtnis- (r = 0,54; p < 0,05) und Kurzzeitgedächtnisleistung (r = -0,55; p < 0,05). Ähnlich verhielt es sich in der VKBR-Gruppe. Allerdings erreichten die Zusammenhänge hier keine statistische Signifikanz (p > 0,05). Innerhalb der VKBR-Gruppe war jedoch eine geringere Entscheidungsqualität mit einer verminderten Interferenz- (r = 0.67, p < 0,05) und Aufmerksamkeitskontrolle (r = 0.66, p < 0,05) korreliert. Im Gegensatz zu den nicht-antizipierten Landefehlern, ergab sich für KG im Hinblick auf die Zunahme der Standfehlerzahl (nicht-antizipierte Landekosten) ein umgekehrt proportionaler Zusammenhang mit einer höheren kognitiven Flexibilität-/ Arbeitsgedächtnis- (r = -0,48; p < 0,05) und Kurzzeitgedächtnisleistung (r = 0,50; p < 0,05). Im Vergleich zur KG, wiesen die VKBR-Testpersonen eine schnellere visuell-motorische Reaktionsgeschwindigkeit auf (p < 0,05). Ansonsten unterschieden sich die Gruppen in keiner der getesteten kognitiven Dimensionen signifikant.
Schlussfolgerungen: Den Ergebnissen dieser Dissertation zufolge, scheinen VKBR- im Vergleich zu Kontrolltestpersonen keine größeren Schwierigkeiten im Umgang mit den nicht-antizipierten Landeanforderungen aufzuweisen. Zudem liefern die Resultate erstmals Hinweise für die Relevanz der höheren kognitiven Funktionen für die Landesicherheit unter nicht-antizipierten Anforderungen. Diese Zusammenhänge sind insofern von besonderer Relevanz, als dass die in beiden Gruppen detektierten nicht-antizipierten Landekosten, Spielsporttreibende einem erhöhten Verletzungsrisiko aussetzen können. Die Verifizierung dieser Befunde durch zukünftige Studien bietet daher wertvolle primär- und sekundärpräventive Potenziale durch eine stärkere inhaltliche Ausrichtung der Trainings- und Therapiepraxis auf die komplexen kognitiv-motorischen Spielanforderungen.
Failed jump landings represent a key mechanism of musculoskeletal trauma. It has been speculated that cognitive dual-task loading during the flight phase may moderate the injury risk. This study aimed to explore whether increased visual distraction can compromise landing biomechanics. Twenty-one healthy, physically active participants (15 females, 25.8 ± 0.4 years) completed a series of 30 counter-movement jumps (CMJ) onto a capacitive pressure platform. In addition to safely landing on one leg, they were required to memorize either one, two or three jersey numbers shown during the flight phase (randomly selected and equally balanced over all jumps). Outcomes included the number of recall errors as well as landing errors and three variables of landing kinetics (time to stabilization/TTS, peak ground reaction force/pGRF, length of the centre of pressure trace/COPT). Differences between the conditions were calculated using the Friedman test and the post hoc Bonferroni-Holm corrected Wilcoxon test. Regardless of the condition, landing errors remained unchanged (p = .46). In contrast, increased visual distraction resulted in a higher number of recall errors (chi² = 13.3, p = .001). Higher cognitive loading, furthermore, appeared to negatively impact mediolateral COPT (p < .05). Time to stabilization (p = .84) and pGRF (p = .78) were unaffected. A simple visual distraction in a controlled experimental setting is sufficient to adversely affect landing stability and task-related short-term memory during CMJ. The ability to precisely perceive the environment during movement under time constraints may, hence, represent a new injury risk factor and should be investigated in a prospective trial.
Background: We aimed to investigate the potential effects of a 4-week motor–cognitive dual-task training on cognitive and motor function as well as exercise motivation in young, healthy, and active adults.
Methods: A total of 26 participants (age 25 ± 2 years; 10 women) were randomly allocated to either the intervention group or a control group. The intervention group performed a motor–cognitive training (3×/week), while the participants of the control group received no intervention. Before and after the intervention period of 4 weeks, all participants underwent cognitive (d2-test, Trail Making Test) and motor (lower-body choice reaction test and time to stabilization test) assessments. Following each of the 12 workouts, self-reported assessments (rating of perceived exertion, enjoyment and pleasant anticipation of the next training session) were done. Analyses of covariances and 95% confidence intervals plotting for between group and time effects were performed.
Results: Data from 24 participants were analysed. No pre- to post-intervention improvement nor a between-group difference regarding motor outcomes (choice-reaction: F = 0.5; time to stabilization test: F = 0.7; p > 0.05) occurred. No significant training-induced changes were found in the cognitive tests (D2: F = 0.02; Trail Making Test A: F = 0.24; Trail Making Test B: F = 0.002; p > 0.05). Both enjoyment and anticipation of the next workout were rated as high.
Discussion: The neuro-motor training appears to have no significant effects on motor and cognitive function in healthy, young and physically active adults. This might be explained in part by the participants’ very high motor and cognitive abilities, the comparably low training intensity or the programme duration. The high degree of exercise enjoyment, however, may qualify the training as a facilitator to initiate and maintain regular physical activity. The moderate to vigorous intensity levels further point towards potential health-enhancing cardiorespiratory effects.
Perceptual-cognitive function and unplanned athletic movement task performance: a systematic review
(2020)
The performance of choice-reaction tasks during athletic movement has been demonstrated to evoke unfavorable biomechanics in the lower limb. However, the mechanism of this observation is unknown. We conducted a systematic review examining the association between (1) the biomechanical and functional safety of unplanned sports-related movements (e.g., jumps/runs with a spontaneously indicated landing leg/cutting direction) and (2) markers of perceptual–cognitive function (PCF). A literature search in three databases (PubMed, ScienceDirect and Google Scholar) identified five relevant articles. The study quality, rated by means of a modified Downs and Black checklist, was moderate to high (average: 13/16 points). Four of five papers, in at least one parameter, found either an association of PCF with task safety or significantly reduced task safety in low vs. high PCF performers. However, as (a) the outcomes, populations and statistical methods of the included trials were highly heterogeneous and (b) only two out of five studies had an adequate control condition (pre-planned movement task), the evidence was classified as conflicting. In summary, PCF may represent a factor affecting injury risk and performance during unplanned sports-related movements, but future research strengthening the evidence for this association is warranted.