Refine
Language
- English (2)
Has Fulltext
- yes (2)
Is part of the Bibliography
- no (2)
Keywords
- Bacterial genetics (1)
- Bacterial physiology (1)
- Microbial ecology (1)
- acetogenic bacteria (1)
- bioreactor (1)
- carbon capture (1)
- fermentation (1)
- formate oxidation (1)
- hydrogen storage (1)
- hydrogen-dependent CO2 reductase (1)
Institute
Interspecies hydrogen transfer in anoxic ecosystems is essential for the complete microbial breakdown of organic matter to methane. Acetogenic bacteria are key players in anaerobic food webs and have been considered as prime candidates for hydrogen cycling. We have tested this hypothesis by mutational analysis of the hydrogenase in the model acetogen Acetobacterium woodii. Hydrogenase-deletion mutants no longer grew on H2 + CO2 or organic substrates such as fructose, lactate, or ethanol. Heterotrophic growth could be restored by addition of molecular hydrogen to the culture, indicating that hydrogen is an intermediate in heterotrophic growth. Indeed, hydrogen production from fructose was detected in a stirred-tank reactor. The mutant grew well on organic substrates plus caffeate, an alternative electron acceptor that does not require molecular hydrogen but NADH as reductant. These data are consistent with the notion that molecular hydrogen is produced from organic substrates and then used as reductant for CO2 reduction. Surprisingly, hydrogen cycling in A. woodii is different from the known modes of interspecies or intraspecies hydrogen cycling. Our data are consistent with a novel type of hydrogen cycling that connects an oxidative and reductive metabolic module in one bacterial cell, "intracellular syntrophy."
Hydrogen is a promising fuel in a carbon-neutral economy, and many efforts are currently undertaken to produce hydrogen. One of the challenges is to store and transport the highly explosive gas in a safe and easy way. One option that is intensively analyzed by chemists and biologists is the conversion of hydrogen and CO2 to formic acid, the liquid organic hydrogen carrier. Here, we demonstrate for the first time that a bio-based system, using Acetobacterium woodii as the biocatalyst, allows multiple cycles of bi-directional hydrogenation of CO2 to formic acid in one bioreactor. The process was kept running over 2 weeks producing and oxidizing 330 mM formic acid in total. Unwanted side-product formation of acetic acid was prevented through metabolic engineering of the organism. The demonstrated process design can be considered as a future “bio-battery” for the reversible storage of electrons in the form of H2 in formic acid, a versatile compound.