Refine
Document Type
- Article (21)
Language
- English (21)
Has Fulltext
- yes (21)
Is part of the Bibliography
- no (21)
Keywords
- Patient blood management (3)
- Blood loss estimation (2)
- Mortality (2)
- Outcome (2)
- Transfusion (2)
- Visual estimation (2)
- meningioma (2)
- Anaemia (1)
- Anesthesia, Intravenous (1)
- Asphyxia (1)
Institute
- Medizin (21)
Background: The intraoperative blood loss is estimated daily in the operating room and is mainly done by visual techniques. Due to local standards, the surgical sponge colours can vary (e.g. white in US, green in Germany). The influence of sponge colour on accuracy of estimation has not been in the focus of research yet. Material and methods: A blood loss simulation study containing four “bleeding” scenarios each per sponge colour were created by using expired whole blood donation samples. The blood donations were applied to white and green surgical sponges after dilution with full electrolyte solution. Study participants had to estimate the absorbed blood loss in sponges in all scenarios. The difference to the reference blood loss was analysed. Multivariate linear regression analysis was performed to investigate other influence factors such as staff experience and sponge colour. Results: A total of 53 anaesthesists participated in the study. Visual estimation correlated moderately with reference blood loss in white (Spearman's rho: 0.521; p = 3.748*10−16) and green sponges (Spearman's rho: 0.452; p = 4.683*10−12). The median visually estimated blood loss was higher in white sponges (250ml IRQ 150–412.5ml) than in green sponges (150ml IQR 100-300ml), compared to reference blood loss (103ml IQR 86–162.8). For both colour types of sponges, major under- and overestimation was observed. The multivariate statistics demonstrates that fabric colours have a significant influence on estimation (p = 3.04*10−10), as well as clinician’s qualification level (p = 2.20*10−10, p = 1.54*10−08) and amount of RBL to be estimated (p < 2*10−16). Conclusion: The deviation of correct blood loss estimation was smaller with white surgical sponges compared to green sponges. In general, deviations were so severe for both types of sponges, that it appears to be advisable to refrain from visually estimating blood loss whenever possible and instead to use other techniques such as e.g. colorimetric estimation.
Background: The most common technique used worldwide to quantify blood loss during an operation is the visual assessment by the attending intervention team. In every operating room you will find scaled suction canisters that collect fluids from the surgical field. This scaling is commonly used by clinicians for visual assessment of intraoperative blood loss. While many studies have been conducted to quantify and improve the inaccuracy of the visual estimation method, research has focused on the estimation of blood volume in surgical drapes. The question whether and how scaling of canisters correlates with actual blood loss and how accurately clinicians estimate blood loss in scaled canisters has not been the focus of research to date.
Methods: A simulation study with four “bleeding” scenarios was conducted using expired whole blood donations. After diluting the blood donations with full electrolyte solution, the sample blood loss volume (SBL) was transferred into suction canisters. The study participants then had to estimate the blood loss in all four scenarios. The difference to the reference blood loss (RBL) per scenario was analyzed.
Results: Fifty-three anesthetists participated in the study. The median estimated blood loss was 500 ml (IQR 300/1150) compared to the RBL median of 281.5 ml (IQR 210.0/1022.0). Overestimations up to 1233 ml were detected. Underestimations were also observed in the range of 138 ml. The visual estimate for canisters correlated moderately with RBL (Spearman’s rho: 0.818; p < 0.001). Results from univariate nonparametric confirmation statistics regarding visual estimation of canisters show that the deviation of the visual estimate of blood loss is significant (z = − 10.95, p < 0.001, n = 220). Participants’ experience level had no significant influence on VEBL (p = 0.402).
Conclusion: The discrepancies between the visual estimate of canisters and the actual blood loss are enormous despite the given scales. Therefore, we do not recommend estimating the blood loss visually in scaled suction canisters. Colorimetric blood loss estimation could be a more accurate option.
Purpose: Trauma is the leading cause of death in children. In adults, blood transfusion and fluid resuscitation protocols changed resulting in a decrease of morbidity and mortality over the past 2 decades. Here, transfusion and fluid resuscitation practices were analysed in severe injured children in Germany.
Methods: Severely injured children (maximum Abbreviated Injury Scale (AIS) ≥ 3) admitted to a certified trauma-centre (TraumaZentrum DGU®) between 2002 and 2017 and registered at the TraumaRegister DGU® were included and assessed regarding blood transfusion rates and fluid therapy.
Results: 5,118 children (aged 1–15 years) with a mean ISS 22 were analysed. Blood transfusion rates administered until ICU admission decreased from 18% (2002–2005) to 7% (2014–2017). Children who are transfused are increasingly seriously injured. ISS has increased for transfused children aged 1–15 years (2002–2005: mean 27.7–34.4 in 2014–2017). ISS in non-transfused children has decreased in children aged 1–15 years (2002–2005: mean 19.6 to mean 17.6 in 2014–2017). Mean prehospital fluid administration decreased from 980 to 549 ml without affecting hemodynamic instability.
Conclusion: Blood transfusion rates and amount of fluid resuscitation decreased in severe injured children over a 16-year period in Germany. Restrictive blood transfusion and fluid management has become common practice in severe injured children. A prehospital restrictive fluid management strategy in severely injured children is not associated with a worsened hemodynamic state, abnormal coagulation or base excess but leads to higher hemoglobin levels.
Transfusion of red blood cells (RBC) in patients undergoing major elective cranial surgery is associated with increased morbidity, mortality and prolonged hospital length of stay (LOS). This retrospective single center study aims to identify the clinical outcome of RBC transfusions on skull base and non-skull base meningioma patients including the identification of risk factors for RBC transfusion. Between October 2009 and October 2016, 423 patients underwent primary meningioma resection. Of these, 68 (16.1%) received RBC transfusion and 355 (83.9%) did not receive RBC units. Preoperative anaemia rate was significantly higher in transfused patients (17.7%) compared to patients without RBC transfusion (6.2%; p = 0.0015). In transfused patients, postoperative complications as well as hospital LOS was significantly higher (p < 0.0001) compared to non-transfused patients. After multivariate analyses, risk factors for RBC transfusion were preoperative American Society of Anaesthesiologists (ASA) physical status score (p = 0.0247), tumor size (p = 0.0006), surgical time (p = 0.0018) and intraoperative blood loss (p < 0.0001). Kaplan-Meier curves revealed significant influence on overall survival by preoperative anaemia, RBC transfusion, smoking, cardiovascular disease, preoperative KPS ≤ 60% and age (elderly ≥ 75 years). We concluded that blood loss due to large tumors or localization near large vessels are the main triggers for RBC transfusion in meningioma patients paired with a potential preselection that masks the effect of preoperative anaemia in multivariate analysis. Further studies evaluating the impact of preoperative anaemia management for reduction of RBC transfusion are needed to improve the clinical outcome of meningioma patients.
Meningioma surgery in patients ≥70 years of age: clinical outcome and validation of the SKALE score
(2021)
Along with increasing average life expectancy, the number of elderly meningioma patients has grown proportionally. Our aim was to evaluate whether these specific patients benefit from surgery and to investigate a previously published score for decision-making in meningioma patients (SKALE). Of 421 patients who underwent primary intracranial meningioma resection between 2009 and 2015, 71 patients were ≥70 years of age. We compared clinical data including World Health Organization (WHO) grade, MIB-1 proliferation index, Karnofsky Performance Status Scale (KPS), progression free survival (PFS) and mortality rate between elderly and all other meningioma patients. Preoperative SKALE scores (Sex, KPS, ASA score, location and edema) were determined for elderly patients. SKALE ≥8 was set for dichotomization to determine any association with outcome parameters. In 71 elderly patients (male/female 37/34) all data were available. Postoperative KPS was significantly lower in elderly patients (p < 0.0001). Pulmonary complications including pneumonia (10% vs. 3.2%; p = 0.0202) and pulmonary embolism (12.7% vs. 6%; p = 0.0209) occurred more frequently in our elderly cohort. Analyses of the Kaplan Meier curves revealed differences in three-month (5.6% vs. 0.3%; p = 0.0033), six-month (7% vs. 0.3%; p = 0.0006) and one-year mortality (8.5% vs. 0.3%; p < 0.0001) for elderly patients. Statistical analysis showed significant survival benefit in terms of one-year mortality for elderly patients with SKALE scores ≥8 (5.1 vs. 25%; p = 0.0479). According to our data, elderly meningioma patients face higher postoperative morbidity and mortality than younger patients. However, resection is reasonable for selected patients, particularly when reaching a SKALE score ≥ 8.
Background: Acute bleeding requires fast and targeted therapy. Therefore, knowledge of the patient's potential to form a clot is crucial. Point-of-care testing (POCT) provides fast and reliable information on coagulation. Structural circumstances, such as person-bound sample transport, can prolong the reporting of the results. The aim of the present study was to investigate the diagnostic quality and accuracy between POCT INR diagnostics and standard laboratory analysis (SLA) as well as the time advantage between a pneumatic tube and a personal-based transport system. Methods: Two groups of haemorrhagic patients (EG: emergency department; OG: delivery room; each n = 12) were examined in the context of bleeding emergencies using POCT and SLA. Samples were transported via a pneumatic tube system or by a personal transport service. Results: INR results between POCT and SLA showed a high and significant correlation (EG: p < 0.001; OG: p < 0.001). POCT results were reported significantly more quickly (EG: 1.1 vs. 39.6 min; OG: 2.0 vs. 75.0 min; p < 0.001) and required less time for analysis (EG: 0.3 vs. 24.0 min; OG: 0.5 vs. 45.0 min; p < 0.001) compared to SLA. The time for transportation with the pneumatic tube was significantly shorter (8.0 vs. 18.5 min; p < 0.001) than with the personal-based transport system. Conclusion: The results of the present study suggest that POCT may be a suitable method for the emergency diagnosis and may be used as prognostic diagnostic elements in haemotherapy algorithms to initiate targeted haemotherapy at an early point in time.
Background: Approximately one in three patients suffers from preoperative anaemia. Even though haemoglobin is measured before surgery, anaemia management is not implemented in every hospital. Objective: Here, we demonstrate the implementation of an anaemia walk-in clinic at an Orthopedic University Hospital. To improve the diagnosis of iron deficiency (ID), we examined whether reticulocyte haemoglobin (Ret-He) could be a useful additional parameter. Material and Methods: In August 2019, an anaemia walk-in clinic was established. Between September and December 2019, major orthopaedic surgical patients were screened for preoperative anaemia. The primary endpoint was the incidence of preoperative anaemia. Secondary endpoints included Ret-He level, red blood cell (RBC) transfusion rate, in-hospital length of stay and anaemia at hospital discharge. Results: A total of 104 patients were screened for anaemia. Preoperative anaemia rate was 20.6%. Intravenous iron was supplemented in 23 patients. Transfusion of RBC units per patient (1.7 ± 1.2 vs. 0.2 ± 0.9; p = 0.004) and hospital length of stay (13.1 ± 4.8 days vs. 10.6 ± 5.1 days; p = 0.068) was increased in anaemic patients compared to non-anaemic patients. Ret-He values were significantly lower in patients with ID anaemia (33.3 pg [28.6–40.2 pg]) compared to patients with ID (35.3 pg [28.9–38.6 pg]; p = 0.015) or patients without anaemia (35.4 pg [30.2–39.4 pg]; p = 0.001). Conclusion: Preoperative anaemia is common in orthopaedic patients. Our results proved the feasibility of an anaemia walk-in clinic to manage preoperative anaemia. Furthermore, our analysis supports the use of Ret-He as an additional parameter for the diagnosis of ID in surgical patients.
Purpose: Anaemia is one of the leading causes of death among severely injured patients. It is also known to increase the risk of death and prolong the length of hospital stay in various surgical groups. The main objective of this study is to analyse the anaemia rate on admission to the emergency department and the impact of anaemia on in-hospital mortality.
Methods: Data from the TraumaRegister DGU® (TR-DGU) between 2015 and 2019 were analysed. Inclusion criteria were age ≥ 16 years and most severe Abbreviated Injury Scale (AIS) score ≥ 3. Patients were divided into three anaemia subgroups: no or mild anaemia (NA), moderate anaemia (MA) and severe anaemia (SA). Pre-hospital data, patient characteristics, treatment in the emergency room (ER), outcomes, and differences between trauma centres were analysed.
Results: Of 67,595 patients analysed, 94.9% (n = 64,153) exhibited no or mild anaemia (Hb ≥ 9 g/dl), 3.7% (n = 2478) displayed moderate anaemia (Hb 7–8 g/dl) and 1.4% (n = 964) presented with severe anaemia (Hb < 7 g/dl). Haemoglobin (Hb) values ranged from 3 to 18 g/dl with a mean Hb value of 12.7 g/dl. In surviving patients, anaemia was associated with prolonged length of stay (LOS). Multivariate logistic regression analyses revealed moderate (p < 0.001 OR 1.88 (1.66–2.13)) and severe anaemia (p < 0.001 OR 4.21 (3.46–5.12)) to be an independent predictor for mortality. Further significant predictors are ISS score per point (OR 1.0), age 70–79 (OR 4.8), age > 80 (OR 12.0), severe pre-existing conditions (ASA 3/4) (OR 2.26), severe head injury (AIS 5/6) (OR 4.8), penetrating trauma (OR 1.8), unconsciousness (OR 4.8), shock (OR 2.2) and pre-hospital intubation (OR 1.6).
Conclusion: The majority of severely injured patients are admitted without anaemia to the ER. Injury-associated moderate and severe anaemia is an independent predictor of mortality in severely injured patients.
Background: Point of care devices for performing targeted coagulation substitution in patients who are bleeding have become increasingly important in recent years. New on the market is the Quantra. It is a device that uses sonorheometry, a sonic estimation of elasticity via resonance, which is a novel ultrasound-based technology that measures viscoelastic properties of whole blood. Several studies have already shown the comparability of the Quantra with devices already established on the market, such as the rotational thromboelastometry (ROTEM) device.
Objective: In contrast to existing studies, this study is the first prospective interventional study using this new system in a cardiac surgical patient cohort. We will investigate the noninferiority between an already existing coagulation algorithm based on the ROTEM/Multiplate system and a new algorithm based on the Quantra system for the treatment of coagulopathic cardiac surgical patients.
Methods: The study is divided into two phases. In an initial observation phase, whole blood samples of 20 patients obtained at three defined time points (prior to surgery, after completion of cardiopulmonary bypass, and on arrival in the intensive care unit) will be analyzed using both the ROTEM/Multiplate and Quantra systems. The obtained threshold values will be used to develop a novel algorithm for hemotherapy. In a second intervention phase, the new algorithm will be tested for noninferiority against an algorithm used routinely for years in our department.
Results: The main objective of the examination is the cumulative loss of blood within 24 hours after surgery. Statistical calculations based on the literature and in-house data suggest that the new algorithm is not inferior if the difference in cumulative blood loss is <150 mL/24 hours.
Conclusions: Because of the comparability of the Quantra sonorheometry system with the ROTEM measurement methods, the existing hemotherapy treatment algorithm can be adapted to the Quantra device with proof of noninferiority.
Trial Registration: ClinicalTrials.gov NCT03902275; https://clinicaltrials.gov/ct2/show/NCT03902275
International Registered Report Identifier (IRRID): DERR1-10.2196/17206