Refine
Document Type
- Conference Proceeding (15)
- Article (9)
- Preprint (3)
Language
- English (27)
Has Fulltext
- yes (27)
Is part of the Bibliography
- no (27)
Keywords
- Lattice QCD (2)
- Ab initio calculations (1)
- Astronomical masses & mass distributions (1)
- BCS phase (1)
- Bose-Einstein condensates (1)
- Evolution of the Universe (1)
- FOS: Physical sciences (1)
- Gravitational waves (1)
- High Energy Physics - Lattice (hep-lat) (1)
- High Energy Physics - Phenomenology (hep-ph) (1)
We report on the status of ongoing investigations aiming at locating the deconfinement critical point with standard Wilson fermions and Nf = 2 flavors towards the continuum limit (standard Columbia plot); locating the tricritical masses at imaginary chemical potential with unimproved staggered fermions at Nf = 2 (extended Columbia plot); identifying the order of the chiral phase transition at μ = 0 for Nf = 2 via extrapolation from non integer Nf (alternative Columbia plot).
The SU(3) pure gauge theory exhibits a first-order thermal deconfinement transition due to spontaneous breaking of its global Z3 center symmetry. When heavy dynamical quarks are added, this symmetry is broken explicitly and the transition weakens with decreasing quark mass until it disappears at a critical point. We compute the critical hopping parameter and the associated pion mass for lattice QCD with Nf=2 degenerate standard Wilson fermions on Nτ∈{6,8,10} lattices, corresponding to lattice spacings a=0.12 fm, a=0.09 fm, a=0.07 fm, respectively. Significant cutoff effects are observed, with the first-order region growing as the lattice gets finer. While current lattices are still too coarse for a continuum extrapolation, we estimate mcπ≈4 GeV with a remaining systematic error of ∼20%. Our results allow us to assess the accuracy of the leading-order and next-to-leading-order hopping expanded fermion determinant used in the literature for various purposes. We also provide a detailed investigation of the statistics required for this type of calculation, which is useful for similar investigations of the chiral transition.
The quark confinement in QCD is achieved by concentration of the chromoelectric field between the quark-antiquark pair into a flux tube, which gives rise to a linear quark-antiquark potential. We study the structure of the flux tube created by a static quark-antiquark pair in the pure gauge SU(3) theory, using lattice Monte-Carlo simulations. We calculate the spatial distribution of all three components of the chromoelectric field and perform the “zero curl subtraction” procedure to obtain the nonperturbative part of the longitudinal component of the field, which we identify as the part responsible for the formation of the flux tube. Taking the spatial derivatives of the obtained field allows us to extract the electric charge and magnetic current densities in the flux tube. The behavior of these observables under smearing and with respect to continuum scaling is investigated. Finally, we briefly discuss the role of magnetic currents in the formation of the string tension.
The interrelation between quantum anomalies and electromagnetic fields leads to a series of non-dissipative transport effects in QCD. In this work we study anomalous transport phenomena with lattice QCD simulations using improved staggered quarks in the presence of a background magnetic field. In particular, we calculate the conductivities both in the free case and in the interacting case, analysing the dependence of these coefficients with several parameters, such as the temperature and the quark mass.
In QCD at large enough isospin chemical potential Bose-Einstein Condensation (BEC) takes place, separated from the normal phase by a phase transition. From previous studies the location of the BEC line at the physical point is known. In the chiral limit the condensation happens already at infinitesimally small isospin chemical potential for zero temperature according to chiral perturbation theory. The thermal chiral transition at zero density might then be affected, depending on the shape of the BEC boundary, by its proximity. As a first step towards the chiral limit, we perform simulations of 2+1 flavors QCD at half the physical quark masses. The position of the BEC transition is then extracted and compared with the results at physical masses.
The introduction of non-orthogonal electric and magnetic fields in the QCD vacuum enhances the weight of topological sectors with a nonzero topological charge. For weak fields, there is a linear response for the expectation value of the topological charge. We study this linear response and relate it to the QCD correction to the axion-photon coupling. We also analyse the magnetic field dependence of the topological susceptibility for a range of temperatures around Tc. In this work we use lattice simulations with improved staggered quarks at physical masses, including background magnetic and (imaginary) electric fields.
We discuss results for the Roberge Weiss (RW) phase transition at nonzero imaginary baryon and isospin chemical potentials, in the plane of temperature and quark masses. Our study focuses on the light tricritical endpoint which has already been used as a starting point for extrapolations aiming at the chiral limit at vanishing chemical potentials. In particular, we are interested in determining how imaginary isospin chemical potential shifts the tricritical mass with respect to earlier studies at zero imaginary isospin chemical potential. A positive shift might allow one to perform the chiral extrapolations from larger quark mass values, therefore making them less computationally expensive. We also present results for the dynamics of Polyakov loop clusters across the RW phase transition.
According to perturbation theory predictions, QCD matter in the zero-temperature, high-density limits of QCD at nonzero isospin chemical potential is expected to be in a superfluid Bardeen-Cooper-Schrieffer (BCS) phase of u and d¯ Cooper pairs. It is also expected, on symmetry grounds, that such phase connects via an analytical crossover to the phase with Bose-Einstein condensation (BEC) of charged pions at μI≥mπ/2. With lattice results, showing some indications that the deconfinement crossover also smoothly penetrates the BEC phase, the conjecture was made that the former connects continuously to the BEC-BCS crossover. We compute the spectrum of the Dirac operator, and use generalized Banks-Casher relations, to test this conjecture and identify signatures of the superfluid BCS phase.
The magnetic fields generated in non-central heavy-ion collisions are among the strongest fields produced in the Universe, reaching magnitudes comparable to the scale of the strong interactions. Backed by model simulations, the resulting field is expected to be spatially modulated, deviating significantly from the commonly considered uniform profile. To improve our understanding of the physics of quarks and gluons under such extreme conditions, we use lattice QCD simulations with 2+1 staggered fermion flavors with physical quark masses and an inhomogeneous magnetic background for a range of temperatures covering the QCD phase transition. We assume a 1/cosh2 function to model the field profile and vary its strength to analyze the impact on the computed observables and on the transition. We calculate local chiral condensates, local Polyakov loops and estimate the size of lattice artifacts. We find that both observables show non-trivial spatial features due to the interplay between the sea and the valence effects.