Refine
Document Type
- Conference Proceeding (15)
- Article (6)
Language
- English (21)
Has Fulltext
- yes (21)
Is part of the Bibliography
- no (21)
Keywords
- BCS phase (1)
- FOS: Physical sciences (1)
- High Energy Physics - Lattice (hep-lat) (1)
- High Energy Physics - Phenomenology (hep-ph) (1)
- High Energy Physics - Theory (hep-th) (1)
- Hybrid Monte Carlo algorithm (1)
- Lattice QCD (1)
- Lattice Quantum Field Theory (1)
- Lattice field theory (1)
- Lattice gauge theory (1)
The quark confinement in QCD is achieved by concentration of the chromoelectric field between the quark-antiquark pair into a flux tube, which gives rise to a linear quark-antiquark potential. We study the structure of the flux tube created by a static quark-antiquark pair in the pure gauge SU(3) theory, using lattice Monte-Carlo simulations. We calculate the spatial distribution of all three components of the chromoelectric field and perform the “zero curl subtraction” procedure to obtain the nonperturbative part of the longitudinal component of the field, which we identify as the part responsible for the formation of the flux tube. Taking the spatial derivatives of the obtained field allows us to extract the electric charge and magnetic current densities in the flux tube. The behavior of these observables under smearing and with respect to continuum scaling is investigated. Finally, we briefly discuss the role of magnetic currents in the formation of the string tension.
Phase transitions in a non-perturbative regime can be studied by ab initio Lattice Field Theory methods. The status and future research directions for LFT investigations of Quantum Chromo-Dynamics under extreme conditions are reviewed, including properties of hadrons and of the hypothesized QCD axion as inferred from QCD topology in different phases. We discuss phase transitions in strong interactions in an extended parameter space, and the possibility of model building for Dark Matter and Electro-Weak Symmetry Breaking. Methodological challenges are addressed as well, including new developments in Artificial Intelligence geared towards the identification of different phases and transitions.
Attempts to extract the order of the chiral transition of QCD at zero chemical potential, with two dynamical flavors of massless quarks, from simulations with progressively decreasing pion mass, have remained inconclusive because of their increasing numerical cost. In an alternative approach to this problem, we consider the path integral as a function of continuous number Nf of degenerate quarks. If the transition in the chiral limit is first order for Nf≥3, a second-order transition for Nf=2 then requires a tricritical point in between. This, in turn, implies tricritical scaling of the critical boundary line between the first-order and crossover regions as the chiral limit is approached. Noninteger numbers of fermion flavors are easily implemented within the staggered fermion discretization. Exploratory simulations at μ=0 and Nf=2.8, 2.6, 2.4, 2.2, 2.1, on coarse Nτ=4 lattices, indeed show a smooth variation of the critical mass mapping out a critical line in the (m, Nf) plane. For the smallest masses, the line appears consistent with tricritical scaling, allowing for an extrapolation to the chiral limit.
In this contribution we report the status and plans of the open lattice initiative to generate and share new gauge ensembles using the stabilised Wilson fermion framework. The production strategy is presented in terms of a three stage plan alongside summaries of the data management as well as access policies. Current progress in completing the first stage of generating ensembles at four lattice spacings at the flavor symmetric point is given.
The interrelation between quantum anomalies and electromagnetic fields leads to a series of non-dissipative transport effects in QCD. In this work we study anomalous transport phenomena with lattice QCD simulations using improved staggered quarks in the presence of a background magnetic field. In particular, we calculate the conductivities both in the free case and in the interacting case, analysing the dependence of these coefficients with several parameters, such as the temperature and the quark mass.
The OpenLat initiative presents its results of lattice QCD simulations using Stabilized Wilson Fermions (SWF) using 2+1 quark flavors. Focusing on the SU(3) flavor symmetric point mπ=mK=412 MeV, four different lattice spacings (a=0.064,0.077,0.094,0.12 fm) are used to perform the continuum limit to study cutoff effects. We present results on light hadron masses; for the determination we use a Bayesian analysis framework with constraints and model averaging to minimize the bias in the analysis.
Stabilized Wilson fermions are a reformulation of Wilson clover fermions that incorporates several numerical stabilizing techniques, but also a local change of the fermion action - the original clover term being replaced with an exponentiated version of it. We intend to apply the stabilized Wilson fermions toolbox to the thermodynamics of QCD, starting on the Nf=3 symmetric line on the Columbia plot, and to compare the results with those obtained with other fermion discretizations.
We compute the equation of state of isospin asymmetric QCD at zero and non-zero temperatures using direct simulations of lattice QCD with three dynamical flavors at physical quark masses. In addition to the pressure and the trace anomaly and their behavior towards the continuum limit, we will particularly discuss the extraction of the speed of sound. Furthermore, we discuss first steps towards the extension of the EoS to small non-zero baryon chemical potentials via Taylor expansion.
The magnetic fields generated in non-central heavy-ion collisions are among the strongest fields produced in the Universe, reaching magnitudes comparable to the scale of the strong interactions. Backed by model simulations, the resulting field is expected to be spatially modulated, deviating significantly from the commonly considered uniform profile. To improve our understanding of the physics of quarks and gluons under such extreme conditions, we use lattice QCD simulations with 2+1 staggered fermion flavors with physical quark masses and an inhomogeneous magnetic background for a range of temperatures covering the QCD phase transition. We assume a 1/cosh2 function to model the field profile and vary its strength to analyze the impact on the computed observables and on the transition. We calculate local chiral condensates, local Polyakov loops and estimate the size of lattice artifacts. We find that both observables show non-trivial spatial features due to the interplay between the sea and the valence effects.