Refine
Year of publication
Document Type
- Article (21)
Has Fulltext
- yes (21)
Is part of the Bibliography
- no (21)
Keywords
- proteomics (2)
- ATP-citrate lyase (1)
- Acute Myeloid Leukemia (1)
- CGD (1)
- COPD (1)
- CRISPR/Cas (1)
- CRISPR/Cas9 (1)
- Chemiluminescence (1)
- Colorectal cancer (1)
- EGFP (1)
Institute
Measuring NADPH oxidase (Nox)-derived reactive oxygen species (ROS) in living tissues and cells is a constant challenge. All probes available display limitations regarding sensitivity, specificity or demand highly specialized detection techniques. In search for a presumably easy, versatile, sensitive and specific technique, numerous studies have used NADPH-stimulated assays in membrane fractions which have been suggested to reflect Nox activity. However, we previously found an unaltered activity with these assays in triple Nox knockout mouse (Nox1-Nox2-Nox4-/-) tissue and cells compared to wild type. Moreover, the high ROS production of intact cells overexpressing Nox enzymes could not be recapitulated in NADPH-stimulated membrane assays. Thus, the signal obtained in these assays has to derive from a source other than NADPH oxidases. Using a combination of native protein electrophoresis, NADPH-stimulated assays and mass spectrometry, mitochondrial proteins and cytochrome P450 were identified as possible source of the assay signal. Cells lacking functional mitochondrial complexes, however, displayed a normal activity in NADPH-stimulated membrane assays suggesting that mitochondrial oxidoreductases are unlikely sources of the signal. Microsomes overexpressing P450 reductase, cytochromes b5 and P450 generated a NADPH-dependent signal in assays utilizing lucigenin, L-012 and dihydroethidium (DHE). Knockout of the cytochrome P450 reductase by CRISPR/Cas9 technology (POR-/-) in HEK293 cells overexpressing Nox4 or Nox5 did not interfere with ROS production in intact cells. However, POR-/- abolished the signal in NADPH-stimulated assays using membrane fractions from the very same cells. Moreover, membranes of rat smooth muscle cells treated with angiotensin II showed an increased NADPH-dependent signal with lucigenin which was abolished by the knockout of POR but not by knockout of p22phox. In conclusion: the cytochrome P450 system accounts for the majority of the signal of Nox activity chemiluminescence based assays.
Latent transforming growth factor beta binding protein 4 (LTBP4) belongs to the fibrillin/LTBP family of proteins and plays an important role as a structural component of extracellular matrix (ECM) and local regulator of TGFβ signaling. We have previously reported that Ltbp4S knock out mice (Ltbp4S −/−) develop centrilobular emphysema reminiscent of late stage COPD, which could be partially rescued by inactivating the antioxidant protein Sestrin 2 (Sesn2). More recent studies showed that Sesn2 knock out mice upregulate Pdgfrβ-controlled alveolar maintenance programs that protect against cigarette smoke induced pulmonary emphysema. Based on this, we hypothesized that the emphysema of Ltbp4S −/− mice is primarily caused by defective Pdgfrβ signaling. Here we show that LTBP4 induces Pdgfrβ signaling by inhibiting the antioxidant Nrf2/Keap1 pathway in a TGFβ-dependent manner. Overall, our data identified Ltbp4 as a major player in lung remodeling and injury repair.
The ability of hematopoietic stem cells (HSCs) to self-renew is a prerequisite for the establishment of definitive hematopoiesis and life-long blood regeneration. Here, we report the single-stranded DNA-binding transcriptional regulator far upstream element (FUSE)-binding protein 1 (FUBP1) as an essential factor of HSC self-renewal. Functional inactivation of FUBP1 in two different mouse models resulted in embryonic lethal anemia at around E15.5 caused by severely diminished HSCs. Fetal and adult HSCs lacking FUBP1 revealed an HSC-intrinsic defect in their maintenance, expansion, and long-term blood reconstitution, but could differentiate into all hematopoietic lineages. FUBP1-deficient adult HSCs exhibit significant transcriptional changes, including upregulation of the cell-cycle inhibitor p21 and the pro-apoptotic Noxa molecule. These changes caused an increase in generation time and death of HSCs as determined by video-microscopy-based tracking. Our data establish FUBP1 and its recognition of single-stranded genomic DNA as an important element in the transcriptional regulation of HSC self-renewal.
High-throughput gene trapping is a random approach for inducing insertional mutations across the mouse genome. This approach uses gene trap vectors that simultaneously inactivate and report the expression of the trapped gene at the insertion site, and provide a DNA tag for the rapid identification of the disrupted gene. Gene trapping has been used by both public and private institutions to produce libraries of embryonic stem (ES) cells harboring mutations in single genes. Presently,~ 66% of the protein coding genes in the mouse genome have been disrupted by gene trap insertions. Among these, however, genes encoding signal peptides or transmembrane domains (secretory genes) are underrepresented because they are not susceptible to conventional trapping methods. Here, we describe a high-throughput gene trapping strategy that effectively targets secretory genes. We used this strategy to assemble a library of ES cells harboring mutations in 716 unique secretory genes, of which 61% were not trapped by conventional trapping, indicating that the two strategies are complementary. The trapped ES cell lines, which can be ordered from the International Gene Trap Consortium (http://www.genetrap.org), are freely available to the scientific community.
Gene trapping is used to introduce insertional mutations into genes of mouse embryonic stem cells (ESCs). It is performed with gene trap vectors that simultaneously mutate and report the expression of the endogenous gene at the site of insertion and provide a DNA tag for rapid identification of the disrupted gene. Gene traps have been employed worldwide to assemble libraries of mouse ESC lines harboring mutations in single genes, which can be used to make mutant mice. However, most of the employed gene trap vectors require gene expression for reporting a gene trap event and therefore genes that are poorly expressed may be under-represented in the existing libraries. To address this problem, we have developed a novel class of gene trap vectors that can induce gene expression at insertion sites, thereby bypassing the problem of intrinsic poor expression. We show here that the insertion of the osteopontin enhancer into several conventional gene trap vectors significantly increases the gene trapping efficiency in high-throughput screens and facilitates the recovery of poorly expressed genes.
Recombinase-mediated cassette exchange (RMCE) exploits the possibility to unidirectionally exchange any genetic material flanked by heterotypic recombinase recognition sites (RRS) with target sites in the genome. Due to a limited number of available pre-fabricated target sites, RMCE in mouse embryonic stem (ES) cells has not been tapped to its full potential to date. Here, we introduce a universal system, which allows the targeted insertion of any given transcriptional unit into 85 742 previously annotated retroviral conditional gene trap insertions, representing 7013 independent genes in mouse ES cells, by RMCE. This system can be used to express any given cDNA under the control of endogenous trapped promoters in vivo, as well as for the generation of transposon ‘launch pads’ for chromosomal region-specific ‘Sleeping Beauty’ insertional mutagenesis. Moreover, transcription of the gene-of-interest is only activated upon Cre-recombinase activity, a feature that adds conditionality to this expression system, which is demonstrated in vivo. The use of the RMCE system presented in this work requires one single-cloning step followed by one overnight gateway clonase reaction and subsequent cassette exchange in ES cells with efficiencies of 40% in average.
Therapy resistance in leukemia may be due to cancer cell-intrinsic and/or -extrinsic mechanisms. Mutations within BCR-ABL1, the oncogene giving rise to chronic myeloid leukemia (CML), lead to resistance to tyrosine kinase inhibitors (TKI), and some are associated with clinically more aggressive disease and worse outcome. Using the retroviral transduction/transplantation model of CML and human cell lines we faithfully recapitulate accelerated disease course in TKI resistance. We show in various models, that murine and human imatinib-resistant leukemia cells positive for the oncogene BCR-ABL1T315I differ from BCR-ABL1 native (BCR-ABL1) cells with regards to niche location and specific niche interactions. We implicate a pathway via integrin β3, integrin-linked kinase (ILK) and its role in deposition of the extracellular matrix (ECM) protein fibronectin as causative of these differences. We demonstrate a trend towards a reduced BCR-ABL1T315I+ tumor burden and significantly prolonged survival of mice with BCR-ABL1T315I+ CML treated with fibronectin or an ILK inhibitor in xenogeneic and syngeneic murine transplantation models, respectively. These data suggest that interactions with ECM proteins via the integrin β3/ILK-mediated signaling pathway in BCR-ABL1T315I+ cells differentially and specifically influence leukemia progression. Niche targeting via modulation of the ECM may be a feasible therapeutic approach to consider in this setting.
The CRISPR/Cas9 prokaryotic adaptive immune system and its swift repurposing for genome editing enables modification of any prespecified genomic sequence with unprecedented accuracy and efficiency, including targeted gene repair. We used the CRISPR/Cas9 system for targeted repair of patient-specific point mutations in the Cytochrome b-245 heavy chain gene (CYBB), whose inactivation causes chronic granulomatous disease (XCGD)—a life-threatening immunodeficiency disorder characterized by the inability of neutrophils and macrophages to produce microbicidal reactive oxygen species (ROS). We show that frameshift mutations can be effectively repaired in hematopoietic cells by non-integrating lentiviral vectors carrying RNA-guided Cas9 endonucleases (RGNs). Because about 25% of most inherited blood disorders are caused by frameshift mutations, our results suggest that up to a quarter of all patients suffering from monogenic blood disorders could benefit from gene therapy employing personalized, donor template-free RGNs.
Hypoxia poses a stress to cells and decreases mitochondrial respiration, in part by electron transport chain (ETC) complex reorganization. While metabolism under acute hypoxia is well characterized, alterations under chronic hypoxia largely remain unexplored. We followed oxygen consumption rates in THP-1 monocytes during acute (16 h) and chronic (72 h) hypoxia, compared to normoxia, to analyze the electron flows associated with glycolysis, glutamine, and fatty acid oxidation. Oxygen consumption under acute hypoxia predominantly demanded pyruvate, while under chronic hypoxia, fatty acid- and glutamine-oxidation dominated. Chronic hypoxia also elevated electron-transferring flavoproteins (ETF), and the knockdown of ETF–ubiquinone oxidoreductase lowered mitochondrial respiration under chronic hypoxia. Metabolomics revealed an increase in citrate under chronic hypoxia, which implied glutamine processing to α-ketoglutarate and citrate. Expression regulation of enzymes involved in this metabolic shunting corroborated this assumption. Moreover, the expression of acetyl-CoA carboxylase 1 increased, thus pointing to fatty acid synthesis under chronic hypoxia. Cells lacking complex I, which experienced a markedly impaired respiration under normoxia, also shifted their metabolism to fatty acid-dependent synthesis and usage. Taken together, we provide evidence that chronic hypoxia fuels the ETC via ETFs, increasing fatty acid production and consumption via the glutamine-citrate-fatty acid axis.
Macrophages exposed to the Th2 cytokines interleukin (IL) IL-4 and IL-13 exhibit a distinct transcriptional response, commonly referred to as M2 polarization. Recently, IL-4-induced polarization of murine bone marrow-derived macrophages (BMDMs) has been linked to acetyl-CoA levels through the activity of the cytosolic acetyl-CoA-generating enzyme ATP-citrate lyase (ACLY). Here, we studied how ACLY regulated IL-4-stimulated gene expression in human monocyte-derived macrophages (MDMs). Although multiple ACLY inhibitors attenuated IL-4-induced target gene expression, this effect could not be recapitulated by silencing ACLY expression. Furthermore, ACLY inhibition failed to alter cellular acetyl-CoA levels and histone acetylation. We generated ACLY knockout human THP-1 macrophages using CRISPR/Cas9 technology. While these cells exhibited reduced histone acetylation levels, IL-4-induced gene expression remained intact. Strikingly, ACLY inhibitors still suppressed induction of target genes by IL-4 in ACLY knockout cells, suggesting off-target effects of these drugs. Our findings suggest that ACLY may not be the major regulator of nucleocytoplasmic acetyl-CoA and IL-4-induced polarization in human macrophages. Furthermore, caution should be warranted in interpreting the impact of pharmacological inhibition of ACLY on gene expression.