Refine
Document Type
- diplomthesis (1)
- Doctoral Thesis (1)
Language
- German (2)
Has Fulltext
- yes (2)
Is part of the Bibliography
- no (2)
Institute
- Physik (2)
Als Ergebnis dieser Arbeit kann man sehen, daß es experimentiell gelungen ist, mit einem alpha-förmigen Linearresonator einen stabilen unabhängig abstimmbaren Zwei-Farben Ti:saphir Laser aufzubauen, der so in der wissenschaflichen Literatur noch nicht beschrieben ist. Eine Veröfentlichung zu der vorgelegten Arbeit [22] ist beim IEEE Journal of Quantum Electronics eingereicht worden. Die Ausgangsleistung dieses Lasers liegt bei 300 mW. Die durchgeführten Experimente lassen darauf schließen, daß der Laser die meiste Zeit nur auf einer longitudinalen Mode emittiert. Bei einem gleichzeitig möglichen Abstimmbereich von 740 nm bis 850 nm, welches ein Verhältnis von Linienbreite zu Abstimmbereich von besser als 1:250000 bedeutet. Den Beweis, daß der Laser auch bei sehr geringen Differenzfrequenzen betrieben werden kann, lieferte die direkte Messung des Schwebungssignals zwischen den beiden Lasern. Dabei muß man zugeben, daß das im Eingangszitat dieser Arbeit erwähnte Schwebungssignal nicht ohne Hilfsmittel an einer Wand zu beobachten war, sondern eine minimale Schwebung von 3 Mhz gemessen wurde. Im Vergleich zu den 3 x 10 exp 8 Mhz der einzelner Farben ist dies aber ein gutes Ergebnis. Zusätzlich wurde mit dem Ringlaser ein anderer Ansatz zur Abstimmung des Systems realisiert. Diese Anordnung hat mit 800 mW Vorteile bezüglich der Ausgangsleistung aber Nachteile in Hinblick auf Abstimmung und Linienbreite. Im theoretischen Teil konnte gezeigt werden, welche Eigenschaften ein Laser-Resonator haben muß, um stabil im Zweifarben Betrieb eingesetzt zu werden. Weiterhin konnten auch noch die dynamischen Effekte der beiden Resonatortypen mit Hilfe einer Simulation beschrieben werden. Der Laser soll in der Erzeugung von kontinuierlicher Strahlung im Thz Bereich verwendet werden. Dabei sollen photokonduktive Antennen, wie auch Halbleiteroberflächen als Emitter dienen. Bis zum Ende dieser Arbeit konnte der Laser aus zeitlichen Gründen nicht für diese Messungen eingesetzt werden, da es zu Verzögerungen mit den Proben, wie auch mit den Meßgeräten kam. Die Charakterisierung des Lasers aber zeigte, daß die beiden schmalbandigen Farben bei einer Differenzfrenz im Thz-Bereich (20 GHz–50THz) stabil zu realisieren sind.
Aufgebautes Zwei-Farben Lasersystem: Das für diese Arbeit aufgebaute Zwei-Farben Lasersystem erfüllt im Hinblick auf Abstimmbarkeit wie auch auf die erreichbare Ausgangsleistung die für diese Arbeit gesetzten Ziele. Für weiterführende Experimente muss allerdings berücksichtigt werden, dass für eine Steigerung der Ausgangsleistung, wie auch eine weiterführende Stabilisierung weitere Untersuchungen nötig sind, bei denen aber das jetzige System als Grundlage dienen kann und die mit ihm gewonnenen Erkenntnisse berücksichtigt werden müssen. Auch die verwendete Nahfeld-Beleuchtung erfüllt vor allem mit der automatischen Steuerung verknüpft wertvolle Dienst bei der Charakterisierung der untersuchen LT-GaAs Photomischer. Dieses System ist allerdings nicht geeignet, als direkter Entwurf für das endgültige System des SOFIA- oder ALMA-Projektes anzusehen, was auch nie seine Aufgabe war. Numerische Simulation: Die in dieser Arbeit vorgestellte numerische Simulation des DC-Stromverhaltens stellt einen guten Ansatz dar, die Effekte, die durch eine inhomogene Beleuchtung der Photomischer bedingt durch die verwendete Glasfaser entstehen, quantitativ und qualitativ zu erfassen und sie mit realen Photomischern und den durchgeführten Messungen in Verbindung zu bringen. Durchgeführte Nahfeld-Messungen: Die in dieser Arbeit vorgestellten automatischen Nahfeld-Messungen über einen 1D- und 2D-Bereich ermöglichen mit Hilfe des aufgebauten Lasersystems die in dieser Arbeit untersuchten LT-GaAs Photomischer in ihrem Verhalten zu untersuchen, wie es auch möglich ist, ein vollständiges Kennlinien-Feld aufzunehmen.