Refine
Document Type
- Working Paper (6)
- Report (1)
Language
- English (7)
Has Fulltext
- yes (7)
Is part of the Bibliography
- no (7)
Keywords
- stochastic differential utility (4)
- FBSDE (2)
- asset pricing (2)
- consumption-portfolio choice (2)
- incomplete markets (2)
- recursive utility (2)
- Consumption hump (1)
- L´evy framework (1)
- Nutzen (1)
- backward stochastic differential equation (1)
We study consumption-portfolio and asset pricing frameworks with recursive preferences and unspanned risk. We show that in both cases, portfolio choice and asset pricing, the value function of the investor/ representative agent can be characterized by a specific semilinear partial differential equation. To date, the solution to this equation has mostly been approximated by Campbell-Shiller techniques, without addressing general issues of existence and uniqueness. We develop a novel approach that rigorously constructs the solution by a fixed point argument. We prove that under regularity conditions a solution exists and establish a fast and accurate numerical method to solve consumption-portfolio and asset pricing problems with recursive preferences and unspanned risk. Our setting is not restricted to affine asset price dynamics. Numerical examples illustrate our approach.
We study consumption-portfolio and asset pricing frameworks with recursive preferences and unspanned risk. We show that in both cases, portfolio choice and asset pricing, the value function of the investor/representative agent can be characterized by a specific semilinear partial differential equation. To date, the solution to this equation has mostly been approximated by Campbell-Shiller techniques, without addressing general issues of existence and uniqueness. We develop a novel approach that rigorously constructs the solution by a fixed point argument. We prove that under regularity conditions a solution exists and establish a fast and accurate numerical method to solve consumption-portfolio and asset pricing problems with recursive preferences and unspanned risk. Our setting is not restricted to affine asset price dynamics. Numerical examples illustrate our approach.
This paper relates recursive utility in continuous time to its discrete-time origins and provides a rigorous and intuitive alternative to a heuristic approach presented in [Duffie, Epstein 1992], who formally define recursive utility in continuous time via backward stochastic differential equations (stochastic differential utility). Furthermore, we show that the notion of Gâteaux differentiability of certainty equivalents used in their paper has to be replaced by a different concept. Our approach allows us to address the important issue of normalization of aggregators in non-Brownian settings. We show that normalization is always feasible if the certainty equivalent of the aggregator is of expected utility type. Conversely, we prove that in general L´evy frameworks this is essentially also necessary, i.e. aggregators that are not of expected utility type cannot be normalized in general. Besides, for these settings we clarify the relationship of our approach to stochastic differential utility and, finally, establish dynamic programming results. JEL Classifications: D81, D91, C61
We consider the continuous-time portfolio optimization problem of an investor with constant relative risk aversion who maximizes expected utility of terminal wealth. The risky asset follows a jump-diffusion model with a diffusion state variable. We propose an approximation method that replaces the jumps by a diffusion and solve the resulting problem analytically. Furthermore, we provide explicit bounds on the true optimal strategy and the relative wealth equivalent loss that do not rely on quantities known only in the true model. We apply our method to a calibrated affine model. Our findings are threefold: Jumps matter more, i.e. our approximation is less accurate, if (i) the expected jump size or (ii) the jump intensity is large. Fixing the average impact of jumps, we find that (iii) rare, but severe jumps matter more than frequent, but small jumps.
he observed hump-shaped life-cycle pattern in individuals' consumption cannot be explained by the classical consumption-savings model. We explicitly solve a model with utility of both consumption and leisure and with educational decisions affecting future wages. We show optimal consumption is hump shaped and determine the peak age. The hump results from consumption and leisure being substitutes and from the implicit price of leisure being decreasing over time; more leisure means less education, which lowers future wages, and the present value of foregone wages decreases with age. Consumption is hump shaped whether the wage is hump shaped or increasing over life.
We show that the optimal consumption of an individual over the life cycle can have the hump shape (inverted U-shape) observed empirically if the preferences of the individual exhibit internal habit formation. In the absence of habit formation, an impatient individual would prefer a decreasing consumption path over life. However, because of habit formation, a high initial consumption would lead to high required consumption in the future. To cover the future required consumption, wealth is set aside, but the necessary amount decreases with age which allows consumption to increase in the early part of life. At some age, the impatience outweighs the habit concerns so that consumption starts to decrease. We derive the optimal consumption strategy in closed form, deduce sufficient conditions for the presence of a consumption hump, and characterize the age at which the hump occurs. Numerical examples illustrate our findings. We show that our model calibrates well to U.S. consumption data from the Consumer Expenditure Survey.