Refine
Has Fulltext
- yes (6)
Is part of the Bibliography
- no (6)
Keywords
- Geschichte 1854 (1)
- Imkerei (1)
Die Bienenzucht : mit Rücksicht auf die Ergebnisse der neusten Forschungen in allen Betriebsarten
(1854)
Protein turnover and quality control by the proteasome is of paramount importance for cell homeostasis. Dysfunction of the proteasome is associated with aging processes and human diseases such as neurodegeneration, cardiomyopathy, and cancer. The regulation, i.e. activation and inhibition of this fundamentally important protein degradation system, is still widely unexplored. We demonstrate here that the evolutionarily highly conserved type II triple-A ATPase VCP and the proteasome inhibitor PSMF1/PI31 interact directly, and antagonistically regulate proteasomal activity. Our data provide novel insights into the regulation of proteasomal activity.
Synaptic long-term potentiation (LTP) at spinal neurons directly communicating pain-specific inputs from the periphery to the brain has been proposed to serve as a trigger for pain hypersensitivity in pathological states. Previous studies have functionally implicated the NMDA receptor-NO pathway and the downstream second messenger, cGMP, in these processes. Because cGMP can broadly influence diverse ion-channels, kinases, and phosphodiesterases, pre- as well as post-synaptically, the precise identity of cGMP targets mediating spinal LTP, their mechanisms of action, and their locus in the spinal circuitry are still unclear. Here, we found that Protein Kinase G1 (PKG-I) localized presynaptically in nociceptor terminals plays an essential role in the expression of spinal LTP. Using the Cre-lox P system, we generated nociceptor-specific knockout mice lacking PKG-I specifically in presynaptic terminals of nociceptors in the spinal cord, but not in post-synaptic neurons or elsewhere (SNS-PKG-I−/− mice). Patch clamp recordings showed that activity-induced LTP at identified synapses between nociceptors and spinal neurons projecting to the periaqueductal grey (PAG) was completely abolished in SNS-PKG-I−/− mice, although basal synaptic transmission was not affected. Analyses of synaptic failure rates and paired-pulse ratios indicated a role for presynaptic PKG-I in regulating the probability of neurotransmitter release. Inositol 1,4,5-triphosphate receptor 1 and myosin light chain kinase were recruited as key phosphorylation targets of presynaptic PKG-I in nociceptive neurons. Finally, behavioural analyses in vivo showed marked defects in SNS-PKG-I−/− mice in several models of activity-induced nociceptive hypersensitivity, and pharmacological studies identified a clear contribution of PKG-I expressed in spinal terminals of nociceptors. Our results thus indicate that presynaptic mechanisms involving an increase in release probability from nociceptors are operational in the expression of synaptic LTP on spinal-PAG projection neurons and that PKG-I localized in presynaptic nociceptor terminals plays an essential role in this process to regulate pain sensitivity.
The experience of pain is mediated by a specialized sensory system, the nociceptive system. There is considerable evidence that the cGMP/cGMP kinase I (cGKI) signaling pathway modulates the nociceptive processing within the spinal cord. However, downstream targets of cGKI in this context have not been identified to date. In this study we investigated whether cysteine-rich protein 2 (CRP2) is a downstream effector of cGKI in the spinal cord and is involved in nociceptive processing. Immunohistochemistry of the mouse spinal cord revealed that CRP2 is expressed in superficial laminae of the dorsal horn. CRP2 is colocalized with cGKI and with markers of primary afferent C fibers. Importantly, the majority of CRP2 mRNA-positive dorsal root ganglion (DRG) neurons express cGKI and CRP2 is phosphorylated in a cGMP-dependent manner. To elucidate the functional role of CRP2 in nociception, we investigated the nociceptive behavior of CRP2-deficient (CRP2-/-) mice. Touch perception and acute thermal nociception were unaltered in CRP2-/- mice. However, CRP2-/- mice showed an increased nociceptive behavior in models of persistent pain as compared to wild type mice. Intrathecal administration of cGKI activating cGMP analogs increased the nociceptive behavior in wild type but not in CRP2-/- mice, indicating that the presence of CRP2 was essential for cGMP/cGKI-mediated nociception. These data indicate that CRP2 is a new downstream effector of cGKI-mediated spinal nociceptive processing and point to an inhibitory role of CRP2 in the generation of inflammatory pain.
First paragraph (this article has no abstract) Persistent stimulation of nociceptors results in sensitization of nociceptive sensory neurons, which is associated with hyperalgesia and allodynia. The release of NO and subsequent synthesis of cGMP in the spinal cord are involved in this process. cGMP-dependent protein kinase I (PKG-I) has been suggested to act as a downstream target of cGMP, but its exact role in nociception hadn't been characterized yet. To further evaluate the NO/cGMP/PKG-I pathway in nociception we assessed the effects of PKG-I inhibiton and activaton in the rat formalin assay and analyzed the nociceptive behavior of PKG-I-/- mice. Open access article.
Background Endothelium-derived nitric oxide plays an important role for the bone marrow microenvironment. Since several important effects of nitric oxide are mediated by cGMP-dependent pathways, we investigated the role of the cGMP downstream effector cGMP-dependent protein kinase I (cGKI) on postnatal neovascularization. Methodology/Principal Findings In a disc neovascularization model, cGKI -/- mice showed an impaired neovascularization as compared to their wild-type (WT) littermates. Infusion of WT, but not cGKI -/- bone marrow progenitors rescued the impaired ingrowth of new vessels in cGKI-deficient mice. Bone marrow progenitors from cGKI -/- mice showed reduced proliferation and survival rates. In addition, we used cGKI alpha leucine zipper mutant (LZM) mice as model for cGKI deficiency. LZM mice harbor a mutation in the cGKI alpha leucine zipper that prevents interaction with downstream signaling molecules. Consistently, LZM mice exhibited reduced numbers of vasculogenic progenitors and impaired neovascularization following hindlimb ischemia compared to WT mice. Conclusions/Significance Our findings demonstrate that the cGMP-cGKI pathway is critical for postnatal neovascularization and establish a new role for cGKI in vasculogenesis, which is mediated by bone marrow-derived progenitors.