Refine
Year of publication
Document Type
- Article (40)
- Conference Proceeding (1)
Has Fulltext
- yes (41)
Is part of the Bibliography
- no (41)
Keywords
- radiotherapy (4)
- glioblastoma (3)
- Fasting (2)
- Glioblastoma (2)
- Glucose (2)
- Ketogenic diet (2)
- Leptin (2)
- Radiation (2)
- SCCHN (2)
- Survivin (2)
Purpose: The prospective, randomized ERGO2 trial investigated the effect of calorie-restricted ketogenic diet and intermittent fasting (KD-IF) on re-irradiation for recurrent brain tumors. The study did not meet its primary endpoint of improved progression-free survival in comparison to standard diet (SD). We here report the results of the quality of life/neurocognition and a detailed analysis of the diet diaries. Methods: 50 patients were randomized 1:1 to re-irradiation combined with either SD or KD-IF. The KD-IF schedule included 3 days of ketogenic diet (KD: 21–23 kcal/kg/d, carbohydrate intake limited to 50 g/d), followed by 3 days of fasting and again 3 days of KD. Follow-up included examination of cognition, quality of life and serum samples. Results: The 20 patients who completed KD-IF met the prespecified goals for calorie and carbohydrate restriction. Substantial decreases in leptin and insulin and an increase in uric acid were observed. The SD group, of note, had a lower calorie intake than expected (21 kcal/kg/d instead of 30 kcal/kg/d). Neither quality of life nor cognition were affected by the diet. Low glucose emerged as a significant prognostic parameter in a best responder analysis. Conclusion: The strict caloric goals of the ERGO2 trial were tolerated well by patients with recurrent brain cancer. The short diet schedule led to significant metabolic changes with low glucose emerging as a candidate marker of better prognosis. The unexpected lower calorie intake of the control group complicates the interpretation of the results. Clinicaltrials.gov number: NCT01754350; Registration: 21.12.2012.
Background: Radiochemotherapy (RCT) has been shown to induce changes in immune cell homeostasis which might affect antitumor immune responses. In the present study, we aimed to compare the composition and kinetics of major lymphocyte subsets in the periphery of patients with non-locoregional recurrent (n = 23) and locoregional recurrent (n = 9) squamous cell carcinoma of the head and neck (SCCHN) upon primary RCT. Methods: EDTA-blood of non-locoregional recurrent SCCHN patients was collected before (t0), after application of 20–30 Gy (t1), in the follow-up period 3 (t2) and 6 months (t3) after RCT. In patients with locoregional recurrence blood samples were taken at t0, t1, t2 and at the time of recurrence (t5). EDTA-blood of age-related, healthy volunteers (n = 22) served as a control (Ctrl). Major lymphocyte subpopulations were phenotyped by multiparameter flow cytometry. Results: Patients with non-recurrent SCCHN had significantly lower proportions of CD19+ B cells compared to healthy individuals before start of any therapy (t0) that dropped further until 3 months after RCT (t2), but reached initial levels 6 months after RCT (t3). The proportion of CD3+ T and CD3+/CD4+ T helper cells continuously decreased between t0 and t3, whereas that of CD8+ cytotoxic T cells and CD3+/CD56+ NK-like T cells (NKT) gradually increased in the same period of time in non-recurrent patients. The percentage of CD4+/CD25+/FoxP3+ regulatory T cells (Tregs) decreased directly after RCT, but increased above initial levels in the follow-up period 3 (t2) and 6 (t3) months after RCT. Patients with locoregional recurrence showed similar trends with respect to B, T cells and Tregs between t0 and t5. CD4+ T helper cells remained stably low between t0 and t5 in patients with locoregional recurrence compared to Ctrl. NKT/NK cell subsets (CD56+/CD69+, CD3−/CD56+, CD3−/CD94+, CD3−/NKG2D+, CD3−/NKp30+, CD3−/NKp46+) increased continuously up to 6 months after RCT (t0-t3) in patients without locoregional recurrence, whereas in patients with locoregional recurrence, these subsets remained stably low until time of recurrence (t5). Conclusion: Monitoring the kinetics of lymphocyte subpopulations especially activatory NK cells before and after RCT might provide a clue with respect to the development of an early locoregional recurrence in patients with SCCHN. However, studies with larger patient cohorts are needed. Trial registration: Observational Study on Biomarkers in Head and Neck Cancer (HNprädBio), NCT02059668. Registered on 11 February 2014, https://clinicaltrials.gov/ct2/show/NCT02059668.
Despite recent advances in the treatment of colorectal cancer (CRC), patient’s individual response and clinical follow-up vary considerably with tumor intrinsic factors to contribute to an enhanced malignancy and therapy resistance. Among these markers, upregulation of members of the inhibitor of apoptosis protein (IAP) family effects on tumorigenesis and radiation- and chemo-resistance by multiple pathways, covering a hampered induction of apoptosis/autophagy, regulation of cell cycle progression and DNA damage response. These mechanisms are tightly controlled by the tumor suppressor p53 and thus transcriptional and post-translational regulation of IAPs by p53 is expected to occur in malignant cells. By this, cellular IAP1/2, X-linked IAP, Survivin, BRUCE and LIVIN expression/activity, as well as their intracellular localization is controlled by p53 in a direct or indirect manner via modulating a multitude of mechanisms. These cover, among others, transcriptional repression and the signal transducer and activator of transcription (STAT)3 pathway. In addition, p53 mutations contribute to deregulated IAP expression and resistance to therapy. This review aims at highlighting the mechanistic and clinical importance of IAP regulation by p53 in CRC and describing potential therapeutic strategies based on this interrelationship.
Purpose: The prospective, randomized ERGO2 trial investigated the effect of calorie-restricted ketogenic diet and intermittent fasting (KD-IF) on re-irradiation for recurrent brain tumors. The study did not meet its primary endpoint of improved progression-free survival in comparison to standard diet (SD). We here report the results of the quality of life/neurocognition and a detailed analysis of the diet diaries. Methods: 50 patients were randomized 1:1 to re-irradiation combined with either SD or KD-IF. The KD-IF schedule included 3 days of ketogenic diet (KD: 21–23 kcal/kg/d, carbohydrate intake limited to 50 g/d), followed by 3 days of fasting and again 3 days of KD. Follow-up included examination of cognition, quality of life and serum samples. Results: The 20 patients who completed KD-IF met the prespecified goals for calorie and carbohydrate restriction. Substantial decreases in leptin and insulin and an increase in uric acid were observed. The SD group, of note, had a lower calorie intake than expected (21 kcal/kg/d instead of 30 kcal/kg/d). Neither quality of life nor cognition were affected by the diet. Low glucose emerged as a significant prognostic parameter in a best responder analysis. Conclusion: The strict caloric goals of the ERGO2 trial were tolerated well by patients with recurrent brain cancer. The short diet schedule led to significant metabolic changes with low glucose emerging as a candidate marker of better prognosis. The unexpected lower calorie intake of the control group complicates the interpretation of the results. Clinicaltrials.gov number: NCT01754350; Registration: 21.12.2012.
Purpose: Dexamethasone (Dex) is the most common corticosteroid to treat edema in glioblastoma (GBM) patients. Recent studies identified the addition of Dex to radiation therapy (RT) to be associated with poor survival. Independently, Tumor Treating Fields (TTFields) provides a novel anti-cancer modality for patients with primary and recurrent GBM. Whether Dex influences the efficacy of TTFields, however, remains elusive. Methods: Human GBM cell lines MZ54 and U251 were treated with RT or TTFields in combination with Dex and the effects on cell counts and cell death were determined via flow cytometry. We further performed a retrospective analysis of GBM patients with TTFields treatment +/- concomitant Dex and analysed its impact on progression-free (PFS) and overall survival (OS). Results: The addition of Dex significantly reduced the efficacy of RT in U251, but not in MZ54 cells. TTFields (200 kHz/250 kHz) induced massive cell death in both cell lines. Concomitant treatment of TTFields and Dex did not reduce the overall efficacy of TTFields. Further, in our retrospective clinical analysis, we found that the addition of Dex to TTFields therapy did not influence PFS nor OS. Conclusion: Our translational investigation indicates that the efficacy of TTFields therapy in patients with GBM and GBM cell lines is not affected by the addition of Dex.
The immune suppressive microenvironment affects efficacy of radio-immunotherapy in brain metastasis
(2021)
The tumor microenvironment in brain metastases is characterized by high myeloid cell content associated with immune suppressive and cancer-permissive functions. Moreover, brain metastases induce the recruitment of lymphocytes. Despite their presence, T-cell-directed therapies fail to elicit effective anti-tumor immune responses. Here, we seek to evaluate the applicability of radio- immunotherapy to modulate tumor immunity and overcome inhibitory effects that diminish anti-cancer activity. Radiotherapy- induced immune modulation resulted in an increase in cytotoxic T-cell numbers and prevented the induction of lymphocyte-mediated immune suppression. Radio-immunotherapy led to significantly improved tumor control with prolonged median survival in experi- mental breast-to-brain metastasis. However, long-term efficacy was not observed. Recurrent brain metastases showed accumula- tion of blood-borne PD-L1+ myeloid cells after radio-immunother- apy indicating the establishment of an immune suppressive environment to counteract re-activated T-cell responses. This finding was further supported by transcriptional analyses indicat- ing a crucial role for monocyte-derived macrophages in mediating immune suppression and regulating T-cell function. Therefore, selective targeting of immune suppressive functions of myeloid cells is expected to be critical for improved therapeutic efficacy of radio-immunotherapy in brain metastases.
Background; Salivary gland carcinomas (SGC) cover a heterogeneous group of malignancies with a lack of data of high-level evidence.
Methods; Clinical data of 127 patients treated for SGC at a university cancer center between 2002 and 2017 were analyzed retrospectively. The association of clinicopathological characteristics, treatment modalities, adverse events, and outcome was assessed.
Results: Patients received surgery (n = 65), surgery followed by (chemo-)radiotherapy (n = 56), or primary (chemo-)radiotherapy (n = 6). Injury to the cranial nerves or their branches was the most frequent surgical complication affecting 40 patients (33.1%). Ten year overall and progression-free survival rates were 73.2% and 65.4%, respectively. Parotid tumor site, advanced tumor, and positive nodal stage remained independent negative prognostic factors for overall survival, loco-regional and distant tumor control in multivariate analysis.
Conclusions: Optimizing treatment strategies for SGC, depending on distinct clinicopathological factors, remains challenging due to the low incidence rates of the disease.
Largely unnoticed, all life on earth is constantly exposed to low levels of ionizing radiation. Radon, an imperceptible natural occurring radioactive noble gas, contributes as the largest single fraction to radiation exposure from natural sources. For that reason, radon represents a major issue for radiation protection. Nevertheless, radon is also applied for the therapy of inflammatory and degenerative diseases in galleries and spas to many thousand patients a year. In either case, chronic environmental exposure or therapy, the effect of radon on the organism exposed is still under investigation at all levels of interaction. This includes the physical stage of diffusion and energy deposition by radioactive decay of radon and its progeny and the biological stage of initiating and propagating a physiologic response or inducing cancer after chronic exposure. The purpose of this manuscript is to comprehensively review the current knowledge of radon and its progeny on physical background, associated cancer risk and potential therapeutic effects.
Ionizing radiation interacts with the immune system in many ways with a multiplicity that mirrors the complexity of the immune system itself: namely the need to maintain a delicate balance between different compartments, cells and soluble factors that work collectively to protect, maintain, and restore tissue function in the face of severe challenges including radiation damage. The cytotoxic effects of high dose radiation are less relevant after low dose exposure, where subtle quantitative and functional effects predominate that may go unnoticed until late after exposure or after a second challenge reveals or exacerbates the effects. For example, low doses may permanently alter immune fitness and therefore accelerate immune senescence and pave the way for a wide spectrum of possible pathophysiological events, including early-onset of age-related degenerative disorders and cancer. By contrast, the so called low dose radiation therapy displays beneficial, anti-inflammatory and pain relieving properties in chronic inflammatory and degenerative diseases. In this review, epidemiological, clinical and experimental data regarding the effects of low-dose radiation on the homeostasis and functional integrity of immune cells will be discussed, as will be the role of immune-mediated mechanisms in the systemic manifestation of localized exposures such as inflammatory reactions. The central conclusion is that ionizing radiation fundamentally and durably reshapes the immune system. Further, the importance of discovery of immunological pathways for modifying radiation resilience amongst other research directions in this field is implied.
Background: The ERGO2 (Ernaehrungsumstellung bei Patienten mit Rezidiv eines Glioblastoms) MR-spectroscopic imaging (MRSI) subtrial investigated metabolism in patients randomized to calorically restricted ketogenic diet/intermittent fasting (crKD-IF) versus standard diet (SD) in addition to re-irradiation (RT) for recurrent malignant glioma. Intracerebral concentrations of ketone bodies (KB), intracellular pH (pHi), and adenosine triphosphate (ATP) were non-invasively determined. Methods: 50 patients were randomized (1:1): Group A keeping a crKD-IF for nine days, and Group B a SD. RT was performed on day 4-8. Twenty-three patients received an extended MRSI-protocol (1H decoupled 31P MRSI with 3D chemical shift imaging (CSI) and 2D 1H point-resolved spectroscopy (PRESS)) at a 3T scanner at baseline and on day 6. Voxels were selected from the area of recurrent tumor and contralateral hemisphere. Spectra were analyzed with LCModel, adding simulated signals of 3-hydroxybutyrate (βOHB), acetone (Acn) and acetoacetate (AcAc) to the standard basis set. Results: Acn was the only reliably MRSI-detectable KB within tumor tissue and/or normal appearing white matter (NAWM). It was detected in 4/11 patients in Group A and in 0/8 patients in Group B. MRSI results showed no significant depletion of ATP in tumor tissue of patients at day 6 during crKD-IF, even though there were a significant difference in ketone serum levels between Group A and B at day 6 and a decline in fasting glucose in Group A from baseline to day 6. The tumor specific alkaline pHi was maintained. Conclusions: Our metabolic findings suggest that tumor cells maintain energy homeostasis even with reduced serum glucose levels and may generate additional ATP through other sources.r sources.