### Refine

#### Document Type

- Article (2)
- Conference Proceeding (1)
- Working Paper (1)

#### Language

- English (4)

#### Has Fulltext

- yes (4)

#### Is part of the Bibliography

- no (4)

#### Keywords

- Computer science (1)
- F.1.3 (1)
- F.4.1 (1)
- H.2.3 (1)
- Logic in computer science (1)
- addition-invariant first-order logic (1)
- algebraic closure properties (1)
- decidable characterisations (1)
- logical interpretations (1)
- regular tree languages (1)

#### Institute

- Informatik (4)

This paper describes a method to treat contextual equivalence in polymorphically typed lambda-calculi, and also how to transfer equivalences from the untyped versions of lambda-calculi to their typed variant, where our specific calculus has letrec, recursive types and is nondeterministic. An addition of a type label to every subexpression is all that is needed, together with some natural constraints for the consistency of the type labels and well-scopedness of expressions. One result is that an elementary but typed notion of program transformation is obtained and that untyped contextual equivalences also hold in the typed calculus as long as the expressions are well-typed. In order to have a nice interaction between reduction and typing, some reduction rules have to be accompanied with a type modification by generalizing or instantiating types.

We study Gaifman locality and Hanf locality of an extension of first-order logic with modulo p counting quantifiers (FO+MODp , for short) with arbitrary numerical predicates. We require that the validity of formulas is independent of the particular interpretation of the numerical predicates and refer to such formulas as arb-invariant formulas. This paper gives a detailed picture of locality and non-locality properties of arb-invariant FO+MODp . For example, on the class of all finite structures, for any p 2, arb-invariant FO+MODp is neither Hanf nor Gaifman local with respect to a sublinear locality radius. However, in case that p is an odd prime power, it is weakly Gaifman local with a polylogarithmic locality radius. And when restricting attention to the class of string structures, for odd prime powers p, arb-invariant FO+MODp is both Hanf and Gaifman local with a polylogarithmic locality radius. Our negative results build on examples of order-invariant FO+MODp formulas presented in Niemist ̈o’s PhD thesis. Our positive results make use of the close connection between FO+MODp and Boolean circuits built from NOT-gates and AND-, OR-, and MOD p - gates of arbitrary fan-in.

We provide elementary algorithms for two preservation theorems for first-order sentences (FO) on the class ℭd of all finite structures of degree at most d: For each FO-sentence that is preserved under extensions (homomorphisms) on ℭd, a ℭd-equivalent existential (existential-positive) FO-sentence can be constructed in 5-fold (4-fold) exponential time. This is complemented by lower bounds showing that a 3-fold exponential blow-up of the computed existential (existential-positive) sentence is unavoidable. Both algorithms can be extended (while maintaining the upper and lower bounds on their time complexity) to input first-order sentences with modulo m counting quantifiers (FO+MODm). Furthermore, we show that for an input FO-formula, a ℭd-equivalent Feferman-Vaught decomposition can be computed in 3-fold exponential time. We also provide a matching lower bound

This paper considers the logic FOcard, i.e., first-order logic with cardinality predicates that can specify the size of a structure modulo some number. We study the expressive power of FOcard on the class of languages of ranked, finite, labelled trees with successor relations. Our first main result characterises the class of FOcard-definable tree languages in terms of algebraic closure properties of the tree languages. As it can be effectively checked whether the language of a given tree automaton satisfies these closure properties, we obtain a decidable characterisation of the class of regular tree languages definable in FOcard. Our second main result considers first-order logic with unary relations, successor relations, and two additional designated symbols < and + that must be interpreted as a linear order and its associated addition. Such a formula is called addition-invariant if, for each fixed interpretation of the unary relations and successor relations, its result is independent of the particular interpretation of < and +. We show that the FOcard-definable tree languages are exactly the regular tree languages definable in addition-invariant first-order logic. Our proof techniques involve tools from algebraic automata theory, reasoning with locality arguments, and the use of logical interpretations. We combine and extend methods developed by Benedikt and Segoufin (ACM ToCL, 2009) and Schweikardt and Segoufin (LICS, 2010).