Refine
Document Type
- Article (2)
- Doctoral Thesis (1)
Language
- English (3)
Has Fulltext
- yes (3)
Is part of the Bibliography
- no (3)
Keywords
Institute
- Physik (3)
Direct nanoscopic observation of plasma waves in the channel of a graphene field-effect transistor
(2020)
Plasma waves play an important role in many solid-state phenomena and devices. They also become significant in electronic device structures as the operation frequencies of these devices increase. A prominent example is field-effect transistors (FETs), that witness increased attention for application as rectifying detectors and mixers of electromagnetic waves at gigahertz and terahertz frequencies, where they exhibit very good sensitivity even high above the cut-off frequency defined by the carrier transit time. Transport theory predicts that the coupling of radiation at THz frequencies into the channel of an antenna-coupled FET leads to the development of a gated plasma wave, collectively involving the charge carriers of both the two-dimensional electron gas and the gate electrode. In this paper, we present the first direct visualization of these waves. Employing graphene FETs containing a buried gate electrode, we utilize near-field THz nanoscopy at room temperature to directly probe the envelope function of the electric field amplitude on the exposed graphene sheet and the neighboring antenna regions. Mapping of the field distribution documents that wave injection is unidirectional from the source side since the oscillating electrical potentials on the gate and drain are equalized by capacitive shunting. The plasma waves, excited at 2 THz, are overdamped, and their decay time lies in the range of 25-70 fs. Despite this short decay time, the decay length is rather long, i.e., 0.3-0.5 μm, because of the rather large propagation speed of the plasma waves, which is found to lie in the range of 3.5-7 × 106 m/s, in good agreement with theory. The propagation speed depends only weakly on the gate voltage swing and is consistent with the theoretically predicted 1/4 power law.
We investigated the excitation of surface plasmon polaritons on gold films with the metallized probe tip of a scattering-type scanning near-field optical microscope (s-SNOM). The emission of the polaritons from the tip, illuminated by near-infrared laser radiation, was found to be anisotropic and not circularly symmetric as expected on the basis of literature data. We furthermore identified an additional excitation channel via light that was reflected off the tip and excited the plasmon polaritons at the edge of the metal film. Our results, while obtained for a non-rotationally-symmetric type of probe tip and thus specific for this situation, indicate that when an s-SNOM is employed for the investigation of plasmonic structures, the unintentional excitation of surface waves and anisotropic surface wave propagation must be considered in order to correctly interpret the signatures of plasmon polariton generation and propagation.
Die vorliegende Arbeit präsentiert Forschungsarbeiten basierend auf nanoskopischen Oberflächenmessungen an plasmonischen Metaoberflächen und zweidimensionalen Materialien, insbesondere dem halbleitenden Übergangsmetal-Dichalcogenid (TMDC) WS_2. Die Thesis ist in sieben Kapitel untergegliedert. Die Einleitung vermittelt einen Überblick über die treibenden Kräfte hinter der Forschung im Bereich der Nanophotonik an zweidimensionalen Materialsystemen. Die Untersuchung der Licht-Materie-Wechselwirkung an dünnen Materialgrenzflächen zieht sich als roter Faden durch die gesamte Arbeit.
Das zweite Kapitel beschreibt den experimentellen Aufbau, der für die Durchführung der nanoskopischen Messungen in dieser Arbeit implementiert wurde. Es werden theoretische Grundlagen, das Messprinzip und die Implementierung des optischen Rasternahfeldmikroskops (s-SNOM) skizziert. Außerdem wird ein Strom-Spannungs-Rasterkraftmikroskop (c-AFM) im Kontaktmodus genutzt, um elektrische Ströme auf mikroskopischen zweidimensionalen TMDC-Terrassen zu messen. In den darauffolgenden vier Kapiteln werden die Beiträge dieser Arbeit zur Untersuchung der Licht-Materie-Wechselwirkung auf der Nanoskala aus verschiedenen Perspektiven vorgestellt. Jedes Kapitel enthält eine kurze Einleitung, einen Theorieteil, Messdaten oder Simulationsergebnisse sowie eine Analyse; vervollständigt durch einen Schlussteil.
Die zentrale Arbeit an einer metallischen Metaoberfläche aus elliptischen Goldscheiben wird in Kapitel 3 vorgestellt. Der zugehörige Theorieteil führt in das Konzept von Oberflächen-Plasmon-Polaritonen (SPP) ein, das für den Forschungsbereich der Plasmonik im Allgemeinen wesentlich ist. Verschiedene Methoden zur Berechnung der Dispersionsrelation dieser Oberflächenmoden an ein- und mehrschichtigen Grenzflächen werden auf die untersuchte Metaoberflächenprobe angewendet. Das Modell sagt drei verschiedene Moden voraus, die sich an der Grenzfläche ausbreiten. Eine teil-gebundene ins Substrat abstrahlende Oberflächenmode sowie zwei vergrabene stark gebundene anisotrope Moden. Eine auf der Probe platzierte Nanokugel aus Silizium wird als radiale Anregungsquelle verwendet.
Der Vergleich mit s-SNOM-Nahfeldbildern zeigt, dass nur die schwach gebundene geführte Modenresonanz ausreichend angeregt wurde, um durch s-SNOM-Bildgebung nachgewiesen werden zu können. Die schwache Oberflächenbindung erklärt die scheinbar isotrope Ausbreitung auf der anisotropen Oberfläche. Die Beobachtung der verbleibenden stark eingegrenzten anisotropen vergrabenen Moden würde eine verbesserte tiefenempfindliche Auflösung des Systems erfordern, die im Prinzip für Schichtdicken von 20 nm möglich sein sollte. Darüber hinaus wirft die Beobachtung die Frage auf, ob die durch Impuls- und Modenvolumenanpassung der Nanokugel gegebene Anregungseffizienz einen ausreichenden Anregungsquerschnitt erzeugt, um nachweisbare vergrabene SPP-Moden zu erzeugen.
In Kapitel 4 wird die Idee der Visualisierung vergrabener elektrischer Felder mit s-SNOM fortgesetzt. Hier wird es auf die Untersuchung von WS_2 angewendet, einem zweidimensionalen TMDC-Material, welches Photolumineszenz zeigt. Durch die Strukturierung des Galliumphosphid-Substrats unter der hängenden Monolage, die von einer dünnen Schicht aus hBN getragen wird, wird die Photolumineszenzausbeute um den Faktor 10 erhöht. Dies wird durch den Entwurf einer lateralen DBR-Mikrokavität mit zusätzlich optimierter vertikaler Tiefe erreicht, die in das Substrat geätzt wurde.
Die hochauflösende Abbildung der elektrischen Feldverteilung im Resonator wird durch den Einsatz von s-SNOM ermöglicht, um die Verbesserung der Einkopplung durch diese beiden Ansätze zu bewerten. Es konnte festgestellt werden, dass die laterale Struktur überwiegend zur verstärkten Photolumineszenzausbeute beiträgt, während für die Einkopplung keine offensichtliche Verstärkung auf die vertikale Strukturoptimierung zurückgeführt werden konnte.
Das zweidimensionale Material WS_2 wird in Kapitel 5 erneut mit Hilfe von c-AFM untersucht. Unterschiedlich dicke Multilagen auf Graphen und Gold dienen als Tunnelbarrieren für vertikale Ströme zwischen Substrat und leitender c-AFM-Messpitze. Die Daten können mit einem Fowler-Nordheim-Modell mit Parametern für die Tunnelbreite und Schottky-Barrierenhöhen der beiden Grenzflächen erklärt werden. Die Messungen zeigen jedoch eine schwache Reproduzierbarkeit, was eine detailliertere Zusammenfassung der relevanten Fehlerquellen erfordert. In der Schlussfolgerung des Kapitels werden mehrere Schlüsselaspekte vorgeschlagen, die bei künftigen Messungen berücksichtigt werden sollten. Entscheidend ist, dass c-AFM sehr empfindlich auf die Adsorption von Wasserfilmen an der Probenoberfläche reagiert, worunter WS_2-Oberflächen unter Umgebungsbedingungen leiden...