Refine
Document Type
- Article (3)
Language
- English (3)
Has Fulltext
- yes (3)
Is part of the Bibliography
- no (3)
Keywords
- Cognitive impairment (1)
- NMDA IgA/IgM antibodies (1)
- NMDA antibody (1)
- Parkinson disease (1)
Institute
- Medizin (3)
At the sensor level many aspects, such as spectral power, functional and effective connectivity as well as relative-power-ratio ratio (RPR) and spatial resolution have been comprehensively investigated through both electroencephalography (EEG) and magnetoencephalography (MEG). Despite this, differences between both modalities have not yet been systematically studied by direct comparison. It remains an open question as to whether the integration of EEG and MEG data would improve the information obtained from the above mentioned parameters. Here, EEG (64-channel system) and MEG (275 sensor system) were recorded simultaneously in conditions with eyes open (EO) and eyes closed (EC) in 29 healthy adults. Spectral power, functional and effective connectivity, RPR, and spatial resolution were analyzed at five different frequency bands (delta, theta, alpha, beta and gamma). Networks of functional and effective connectivity were described using a spatial filter approach called the dynamic imaging of coherent sources (DICS) followed by the renormalized partial directed coherence (RPDC). Absolute mean power at the sensor level was significantly higher in EEG than in MEG data in both EO and EC conditions. At the source level, there was a trend towards a better performance of the combined EEG+MEG analysis compared with separate EEG or MEG analyses for the source mean power, functional correlation, effective connectivity for both EO and EC. The network of coherent sources and the spatial resolution were similar for both the EEG and MEG data if they were analyzed separately. Results indicate that the combined approach has several advantages over the separate analyses of both EEG and MEG. Moreover, by a direct comparison of EEG and MEG, EEG was characterized by significantly higher values in all measured parameters in both sensor and source level. All the above conclusions are specific to the resting state task and the specific analysis used in this study to have general conclusion multi-center studies would be helpful.
The concept of focal epilepsies includes a seizure origin in brain regions with hyper synchronous activity (epileptogenic zone and seizure onset zone) and a complex epileptic network of different brain areas involved in the generation, propagation, and modulation of seizures. The purpose of this work was to study functional and effective connectivity between regions involved in networks of epileptic seizures. The beginning and middle part of focal seizures from ictal surface EEG data were analyzed using dynamic imaging of coherent sources (DICS), an inverse solution in the frequency domain which describes neuronal networks and coherences of oscillatory brain activities. The information flow (effective connectivity) between coherent sources was investigated using the renormalized partial directed coherence (RPDC) method. In 8/11 patients, the first and second source of epileptic activity as found by DICS were concordant with the operative resection site; these patients became seizure free after epilepsy surgery. In the remaining 3 patients, the results of DICS / RPDC calculations and the resection site were discordant; these patients had a poorer post-operative outcome. The first sources as found by DICS were located predominantly in cortical structures; subsequent sources included some subcortical structures: thalamus, Nucl. Subthalamicus and cerebellum. DICS seems to be a powerful tool to define the seizure onset zone and the epileptic networks involved. Seizure generation seems to be related to the propagation of epileptic activity from the primary source in the seizure onset zone, and maintenance of seizures is attributed to the perpetuation of epileptic activity between nodes in the epileptic network. Despite of these promising results, this proof of principle study needs further confirmation prior to the use of the described methods in the clinical praxis.
No association between Parkinson disease and autoantibodies against NMDA-type glutamate receptors
(2019)
Background: IgG-class autoantibodies to N-Methyl-D-Aspartate (NMDA)-type glutamate receptors define a novel entity of autoimmune encephalitis. Studies examining the prevalence of NMDA IgA/IgM antibodies in patients with Parkinson disease with/without dementia produced conflicting results. We measured NMDA antibodies in a large, well phenotyped sample of Parkinson patients without and with cognitive impairment (n = 296) and controls (n = 295) free of neuropsychiatric disease. Detailed phenotyping and large numbers allowed statistically meaningful correlation of antibody status with diagnostic subgroups as well as quantitative indicators of disease severity and cognitive impairment.
Methods: NMDA antibodies were analysed in the serum of patients and controls using well established validated assays. We used anti-NMDA antibody positivity as the main independent variable and correlated it with disease status and phenotypic characteristics.
Results: The frequency of NMDA IgA/IgM antibodies was lower in Parkinson patients (13%) than in controls (22%) and higher than in previous studies in both groups. NMDA IgA/IgM antibodies were neither significantly associated with diagnostic subclasses of Parkinson disease according to cognitive impairment, nor with quantitative indicators of disease severity and cognitive impairment. A positive NMDA antibody status was positively correlated with age in controls but not in Parkinson patients.
Conclusion: It is unlikely albeit not impossible that NMDA antibodies play a significant role in the pathogenesis or progression of Parkinson disease e.g. to Parkinson disease with dementia, while NMDA IgG antibodies define a separate disease of its own.