Refine
Year of publication
Document Type
- Preprint (734)
- Article (675)
- Working Paper (2)
Language
- English (1411)
Has Fulltext
- yes (1411)
Is part of the Bibliography
- no (1411)
Keywords
- BESIII (20)
- e +-e − Experiments (20)
- Branching fraction (15)
- Heavy Ion Experiments (13)
- Hadron-Hadron Scattering (11)
- Particle and Resonance Production (10)
- Quarkonium (9)
- Charm Physics (6)
- Hadron-Hadron scattering (experiments) (6)
- QCD (6)
Institute
- Physik (1292)
- Frankfurt Institute for Advanced Studies (FIAS) (716)
- Informatik (589)
- Informatik und Mathematik (4)
- Medizin (2)
- Biochemie und Chemie (1)
- Biodiversität und Klima Forschungszentrum (BiK-F) (1)
- Center for Financial Studies (CFS) (1)
- ELEMENTS (1)
- Georg-Speyer-Haus (1)
It is proposed to install an experimental setup in the fixed-target hall of the Nuclotron with the final goal to perform a research program focused on the production of strange matter in heavyion collisions at beam energies between 2 and 6 A GeV. The basic setup will comprise a large acceptance dipole magnet with inner tracking detector modules based on double-sided Silicon micro-strip sensors and GEMs. The outer tracking will be based on the drift chambers and straw tube detector. Particle identification will be based on the time-of-flight measurements. This setup will be sufficient perform a comprehensive study of strangeness production in heavy-ion collisions, including multi-strange hyperons, multi-strange hypernuclei, and exotic multi-strange heavy objects. These pioneering measurements would provide the first data on the production of these particles in heavy-ion collisions at Nuclotron beam energies, and would open an avenue to explore the third (strangeness) axis of the nuclear chart. The extension of the experimental program is related with the study of in-medium effects for vector mesons decaying in hadronic modes. The studies of the NN and NA reactions for the reference is assumed.
Based on (2712.4±14.3)×106 ψ(3686) events, we investigate four hadronic decay modes of the P-wave charmonium spin-singlet state hc(1P1)→h+h−π0/η (h=π or K) via the process ψ(3686)→π0hc at BESIII. The hc→π+π−π0 decay is observed with a significance of 9.6σ after taking into account systematic uncertainties. Evidences for hc→K+K−π0 and hc→K+K−η are found with significances of 3.5σ and 3.3σ, respectively, after considering the systematic uncertainties. The branching fractions of these decays are measured to be B(hc→π+π−π0)=(1.36±0.16±0.14)×10−3, B(hc→K+K−π0)=(3.26±0.84±0.36)×10−4, and B(hc→K+K−η)=(3.13±1.08±0.38)×10−4, where the first uncertainties are statistical and the second are systematic. No significant signal of hc→π+π−η is found, and the upper limit of its decay branching fraction is determined to be B(hc→π+π−η)<4.0×10−4 at 90% confidence level.
Using 7.9 fb−1 of e+e− collision data collected at s√=3.773 GeV with the BESIII detector at the BEPCII collider, we search for the massless dark photon with the flavor-changing neutral current processes D0→ωγ′ and D0→γγ′ for the first time. No significant signals are observed, and the upper limits at the 90% confidence level on the massless dark photon branching fraction are set to be 1.1×10−5 and 2.0×10−6 for D0→ωγ′ and D0→γγ′, respectively. These results provide the most stringent constraint on the new physics energy scale associated with cuγ′ coupling in the world, with the new physics energy scale related parameter |C|2+|C5|2<8.2×10−17 GeV−2 at the 90% confidence level.
The e+e−→D+sDs1(2536)− and e+e−→D+sD∗s2(2573)− processes are studied using data samples collected with the BESIII detector at center-of-mass energies from 4.530 to 4.946~GeV. The absolute branching fractions of Ds1(2536)−→D¯∗0K− and D∗s2(2573)−→D¯0K− are measured for the first time to be (35.9±4.8±3.5)% and (37.4±3.1±4.6)%, respectively. The measurements are in tension with predictions based on the assumption that the Ds1(2536) and D∗s2(2573) are dominated by a bare cs¯ component. The e+e−→D+sDs1(2536)− and e+e−→D+sD∗s2(2573)− cross sections are measured, and a resonant structure at around 4.6~GeV with a width of 50~MeV is observed for the first time with a statistical significance of 15σ in the e+e−→D+sD∗s2(2573)− process. It could be the Y(4626) found by the Belle collaboration in the D+sDs1(2536)− final state, since they have similar masses and widths. There is also evidence for a structure at around 4.75~GeV in both processes.
Using a sample of (10087±44)×106 J/ψ events collected by the BESIII detector at the BEPCII collider, we search for the decay X(1870)→K+K−η via the J/ψ→ωK+K−η process for the first time. No significant X(1870) signal is observed. The upper limit on the branching fraction of the decay J/ψ→ωX(1870)→ωK+K−η is determined to be 9.55×10−7 at the 90% confidence level. In addition, the branching faction B(J/ψ→ωK+K−η) is measured to be (3.33±0.02(stat.)±0.12(syst.))×10−4.
The J/ψ,ψ(3686)→Σ0Σ¯0 processes and subsequent decays are studied using the world's largest J/ψ and ψ(3686) data samples collected with the BESIII detector. The strong-CP symmetry is tested in the decays of the Σ0 hyperons for the first time by measuring the decay parameters, αΣ0=−0.0017±0.0021±0.0018 and α¯Σ0=0.0021±0.0020±0.0022. The weak-CP test is performed in the subsequent decays of their daughter particles Λ and Λ¯. Also for the first time, the transverse polarizations of the Σ0 hyperons in J/ψ and ψ(3686) decays are observed with opposite directions, and the ratios between the S-wave and D-wave contributions of the J/ψ,ψ(3686)→Σ0Σ¯0 decays are obtained. These results are crucial to understand the decay dynamics of the charmonium states and the production mechanism of the Σ0−Σ¯0 pairs.
Based on (2712.4±14.3)×106 ψ(3686) events, we investigate four hadronic decay modes of the P-wave charmonium spin-singlet state hc(1P1)→h+h−π0/η (h=π or K) via the process ψ(3686)→π0hc at BESIII. The hc→π+π−π0 decay is observed with a significance of 9.6σ after taking into account systematic uncertainties. Evidences for hc→K+K−π0 and hc→K+K−η are found with significances of 3.5σ and 3.3σ, respectively, after considering the systematic uncertainties. The branching fractions of these decays are measured to be B(hc→π+π−π0)=(1.36±0.16±0.14)×10−3, B(hc→K+K−π0)=(3.26±0.84±0.36)×10−4, and B(hc→K+K−η)=(3.13±1.08±0.38)×10−4, where the first uncertainties are statistical and the second are systematic. No significant signal of hc→π+π−η is found, and the upper limit of its decay branching fraction is determined to be B(hc→π+π−η)<4.0×10−4 at 90% confidence level.
The processes hc→γP(P=η′, η, π0) are studied with a sample of (27.12±0.14)×108 ψ(3686) events collected by the BESIII detector at the BEPCII collider. The decay hc→γη is observed for the first time with the significance of 9.0σ, and the branching fraction is determined to be (3.77±0.55±0.13±0.26)×10−4, while B(hc→γη′) is measured to be (1.40±0.11±0.04±0.10)×10−3, where the first uncertainties are statistical, the second systematic, and the third from the branching fraction of ψ(3686)→π0hc. The combination of these results allows for a precise determination of Rhc=B(hc→γη)B(hc→γη′), which is calculated to be (27.0±4.4±1.0)%. The results are valuable for gaining a deeper understanding of η−η′ mixing, and its manifestation within quantum chromodynamics. No significant signal is found for the decay hc→γπ0, and an upper limit is placed on its branching fraction of B(hc→γπ0)<5.0×10−5, at the 90% confidence level.
The processes hc→γP(P=η′, η, π0)) are studied with a sample of (27.12±0.14)×108 ψ(3686) events collected by the BESIII detector at the BEPCII collider. The branching fractions of hc→γη′ and hc→γη are measured to be (1.40±0.11±0.04±0.10)×10−3 and (3.77±0.55±0.13±0.26)×10−4, respectively, where the first uncertainties are statistical, the second systematic, and the third from the branching fraction of ψ(3686)→π0hc. The ratio Rhc=B(hc→γη)B(hc→γη′) is calculated to be (27.0±4.4±1.0)%. The measurements are consistent with the previous results with improved precision by a factor of 2. The results are valuable for gaining a deeper understanding of η−η′ mixing, and its manifestation within quantum chromodynamics. No significant signal is found for the decay hc→γπ0, and an upper limit is placed on its branching fraction of B(hc→γπ0)<5.0×10−5, at the 90\% confidence level.
We perform the first investigation of the process e+e−→K+K−ψ(2S) and report its Born cross sections over a range of center-of-mass energies from 4.699 to 4.951~GeV. The measurements are carried out using several partial reconstruction techniques using data samples collected by the BESIII detector with a total integrated luminosity of 2.5~fb−1. We search for new tetraquark candidates Z±cs in the decays Z±cs→K±ψ(2S). No significant Z±cs signals are observed.