Refine
Year of publication
Document Type
- Article (13)
Language
- English (13)
Has Fulltext
- yes (13)
Is part of the Bibliography
- no (13)
Keywords
- (surface) partial differential equations (3)
- Finite Volumes (3)
- computational virology (3)
- massively parallel multigrid solvers (3)
- realistic geometries (3)
- viral dynamics (3)
- 3D spatio-temporal resolved mathematical models (2)
- Petrov-Galerkin finite volumes (2)
- hepatitis C virus (HCV) (2)
- mathematical models of viral RNA cycle (2)
Institute
Poster presentation: An important challenge in neuroscience is understanding how networks of neurons go about processing information. Synapses are thought to play an essential role in cellular information processing however quantitative and mathematical models of the underlying physiologic processes that occur at synaptic active zones are lacking. We are generating mathematical models of synaptic vesicle dynamics at a well-characterized model synapse, the Drosophila larval neuromuscular junction. This synapse's simplicity, accessibility to various electrophysiological recording and imaging techniques, and the genetic malleability intrinsic to Drosophila system make it ideal for computational and mathematical studies. We have employed a reductionist approach and started by modeling single presynaptic boutons. Synaptic vesicles can be divided into different pools; however, a quantitative understanding of their dynamics at the Drosophila neuromuscular junction is lacking [4]. We performed biologically realistic simulations of high and low release probability boutons [3] using partial differential equations (PDE) taking into account not only the evolution in time but also the spatial structure in two dimensions (the extension to three dimensions will be implemented soon). PDEs are solved using UG, a program library for the calculation of multi-dimensional PDEs solved using a finite volume approach and implicit time stepping methods leading to extended linear equation systems be solvedwith multi-grid methods [3,4]. Numerical calculations are done on multi-processor computers for fast calculations using different parameters in order to asses the biological feasibility of different models. In preliminary simulations, we modeled vesicle dynamics as a diffusion process describing exocytosis as Neumann streams at synaptic active zones. The initial results obtained with these models are consistent with experimental data. However, this should be regarded as a work in progress. Further refinements will be implemented, including simulations using morphologically realistic geometries which were generated from confocal scans of the neuromuscular junction using NeuRA (a Neuron Reconstruction Algorithm). Other parameters such as glutamate diffusion and reuptake dynamics, as well as postsynaptic receptor kinetics will be incorporated as well.
Poster presentation from Twentieth Annual Computational Neuroscience Meeting: CNS*2011 Stockholm, Sweden. 23-28 July 2011. To truly appreciate the myriad of events which relate synaptic function and vesicle dynamics, simulations should be done in a spatially realistic environment. This holds true in particular in order to explain the rather astonishing motor patterns presented here which we observed within in vivo recordings which underlie peristaltic contractions at a well characterized synapse, the neuromuscular junction (NMJ) of the Drosophila larva. To this end, we have employed a reductionist approach and generated three dimensional models of single presynaptic boutons at the Drosophila larval NMJ. Vesicle dynamics are described by diffusion-like partial differential equations which are solved numerically on unstructured grids using the uG platform. In our model we varied parameters such as bouton-size, vesicle output probability (Po), stimulation frequency and number of synapses, to observe how altering these parameters effected bouton function. Hence we demonstrate that the morphologic and physiologic specialization maybe a convergent evolutionary adaptation to regulate the trade off between sustained, low output, and short term, high output, synaptic signals. There seems to be a biologically meaningful explanation for the co-existence of the two different bouton types as previously observed at the NMJ (characterized especially by the relation between size and Po),the assigning of two different tasks with respect to short- and long-time behaviour could allow for an optimized interplay of different synapse types. As a side product, we demonstrate how advanced methods from numerical mathematics could help in future to resolve also other difficult experimental neurobiological issues.
Poster Presentation from Nineteenth Annual Computational Neuroscience Meeting: CNS*2010 San Antonio, TX, USA. 24-30 July 2010 In order to model extracellular potentials the Line-Source method provides [1] a very powerful and accurate approach. In this method transmembane fluxes are understood as sources for potential distributions which obey the Poission-equation with zero boundary conditions in the infinity. Its solutions reveal that the waveforms are proportional to local transmembrane net currents. The extracellular potentials are comparable small in amplitude and with the aid of their second special derivatives, it is possible to interpret them as additional fluxes to be included into the cable equation having an impact on the membrane potential of surrounding cells [2]. On this basis ephaptic interactions have been studied and have been considered to play a minor role in the network activity. This modeling study provides a new approach based on the first principle of the conservation of charges which leads to a generalized form of the cable equation taking into account the full three-dimensional detail of the cell’s geometry and the presence of the extracellular potential. So instead of coupling the compartment model and the model for extracellular potentials by means of the transmembrane currents, a non-linear system of partial differential equations is solved. Because the abstraction of deviding the cell’s geometry into compartments falls apart, it is possible to examine the contribution of the precise cell geometry to the signal processing while not neglecting the impact which could result from the extracellular potential. Some simulations of propagating action potentials on ramified geometries are going to be shown as well as the resulting distributions of extracellular action potentials.
To truly appreciate the myriad of events which relate synaptic function and vesicle dynamics, simulations should be done in a spatially realistic environment. This holds true in particular in order to explain as well the rather astonishing motor patterns which we observed within in vivo recordings which underlie peristaltic contractionsas well as the shape of the EPSPs at different forms of long-term stimulation, presented both here, at a well characterized synapse, the neuromuscular junction (NMJ) of the Drosophila larva (c.f. Figure 1). To this end, we have employed a reductionist approach and generated three dimensional models of single presynaptic boutons at the Drosophila larval NMJ. Vesicle dynamics are described by diffusion-like partial differential equations which are solved numerically on unstructured grids using the uG platform. In our model we varied parameters such as bouton-size, vesicle output probability (Po), stimulation frequency and number of synapses, to observe how altering these parameters effected bouton function. Hence we demonstrate that the morphologic and physiologic specialization maybe a convergent evolutionary adaptation to regulate the trade off between sustained, low output, and short term, high output, synaptic signals. There seems to be a biologically meaningful explanation for the co-existence of the two different bouton types as previously observed at the NMJ (characterized especially by the relation between size and Po), the assigning of two different tasks with respect to short- and long-time behaviour could allow for an optimized interplay of different synapse types. We can present astonishing similar results of experimental and simulation data which could be gained in particular without any data fitting, however based only on biophysical values which could be taken from different experimental results. As a side product, we demonstrate how advanced methods from numerical mathematics could help in future to resolve also other difficult experimental neurobiological issues.
Mathematical models of virus dynamics have not previously acknowledged spatial resolution at the intracellular level despite substantial arguments that favor the consideration of intracellular spatial dependence. The replication of the hepatitis C virus (HCV) viral RNA (vRNA) occurs within special replication complexes formed from membranes derived from endoplasmatic reticulum (ER). These regions, termed membranous webs, are generated primarily through specific interactions between nonstructural virus-encoded proteins (NSPs) and host cellular factors. The NSPs are responsible for the replication of the vRNA and their movement is restricted to the ER surface. Therefore, in this study we developed fully spatio-temporal resolved models of the vRNA replication cycle of HCV. Our simulations are performed upon realistic reconstructed cell structures—namely the ER surface and the membranous webs—based on data derived from immunostained cells replicating HCV vRNA. We visualized 3D simulations that reproduced dynamics resulting from interplay of the different components of our models (vRNA, NSPs, and a host factor), and we present an evaluation of the concentrations for the components within different regions of the cell. Thus far, our model is restricted to an internal portion of a hepatocyte and is qualitative more than quantitative. For a quantitative adaption to complete cells, various additional parameters will have to be determined through further in vitro cell biology experiments, which can be stimulated by the results deccribed in the present study.
Exploring biophysical properties of virus-encoded components and their requirement for virus replication is an exciting new area of interdisciplinary virological research. To date, spatial resolution has only rarely been analyzed in computational/biophysical descriptions of virus replication dynamics. However, it is widely acknowledged that intracellular spatial dependence is a crucial component of virus life cycles. The hepatitis C virus-encoded NS5A protein is an endoplasmatic reticulum (ER)-anchored viral protein and an essential component of the virus replication machinery. Therefore, we simulate NS5A dynamics on realistic reconstructed, curved ER surfaces by means of surface partial differential equations (sPDE) upon unstructured grids. We match the in silico NS5A diffusion constant such that the NS5A sPDE simulation data reproduce experimental NS5A fluorescence recovery after photobleaching (FRAP) time series data. This parameter estimation yields the NS5A diffusion constant. Such parameters are needed for spatial models of HCV dynamics, which we are developing in parallel but remain qualitative at this stage. Thus, our present study likely provides the first quantitative biophysical description of the movement of a viral component. Our spatio-temporal resolved ansatz paves new ways for understanding intricate spatial-defined processes central to specfic aspects of virus life cycles.
The hepatitis C virus (HCV) RNA replication cycle is a dynamic intracellular process occurring in three-dimensional space (3D), which is difficult both to capture experimentally and to visualize conceptually. HCV-generated replication factories are housed within virus-induced intracellular structures termed membranous webs (MW), which are derived from the Endoplasmatic Reticulum (ER). Recently, we published 3D spatiotemporal resolved diffusion–reaction models of the HCV RNA replication cycle by means of surface partial differential equation (sPDE) descriptions. We distinguished between the basic components of the HCV RNA replication cycle, namely HCV RNA, non-structural viral proteins (NSPs), and a host factor. In particular, we evaluated the sPDE models upon realistic reconstructed intracellular compartments (ER/MW). In this paper, we propose a significant extension of the model based upon two additional parameters: different aggregate states of HCV RNA and NSPs, and population dynamics inspired diffusion and reaction coefficients instead of multilinear ones. The combination of both aspects enables realistic modeling of viral replication at all scales. Specifically, we describe a replication complex state consisting of HCV RNA together with a defined amount of NSPs. As a result of the combination of spatial resolution and different aggregate states, the new model mimics a cis requirement for HCV RNA replication. We used heuristic parameters for our simulations, which were run only on a subsection of the ER. Nevertheless, this was sufficient to allow the fitting of core aspects of virus reproduction, at least qualitatively. Our findings should help stimulate new model approaches and experimental directions for virology.
We present an immersed boundary method for the solution of elliptic interface problems with discontinuous coefficients which provides a second-order approximation of the solution. The proposed method can be categorised as an extended or enriched finite element method. In contrast to other extended FEM approaches, the new shape functions get projected in order to satisfy the Kronecker-delta property with respect to the interface. The resulting combination of projection and restriction was already derived in Höllbacher and Wittum (TBA, 2019a) for application to particulate flows. The crucial benefits are the preservation of the symmetry and positive definiteness of the continuous bilinear operator. Besides, no additional stabilisation terms are necessary. Furthermore, since our enrichment can be interpreted as adaptive mesh refinement, the standard integration schemes can be applied on the cut elements. Finally, small cut elements do not impair the condition of the scheme and we propose a simple procedure to ensure good conditioning independent of the location of the interface. The stability and convergence of the solution will be proven and the numerical tests demonstrate optimal order of convergence.
Korrektur zu: Höllbacher, S., Wittum, G. Correction to: A sharp interface method using enriched finite elements for elliptic interface problems. Numer. Math. 147, 783 (2021). DOI: 10.1007/s00211-021-01180-0.
Gradient-consistent enrichment of finite element spaces for the DNS of fluid-particle interaction
(2019)
Highlights
• Monolithic scheme for particulate flows preventing an oscillating pressure along the interface.
• The choice of enriching shape functions is driven by the properties of its gradient instead of its value.
• The choice of enriching shape functions inherits a natural stabilization on small cut elements.
Abstract
We present gradient-consistent enriched finite element spaces for the simulation of free particles in a fluid. This involves forces being exchanged between the particles and the fluid at the interface. In an earlier work [23] we derived a monolithic scheme which includes the interaction forces into the Navier-Stokes equations by means of a fictitious domain like strategy. Due to an inexact approximation of the interface oscillations of the pressure along the interface were observed. In multiphase flows oscillations and spurious velocities are a common issue. The surface force term yields a jump in the pressure and therefore the oscillations are usually resolved by extending the spaces on cut elements in order to resolve the discontinuity. For the construction of the enriched spaces proposed in this paper we exploit the Petrov-Galerkin formulation of the vertex-centered finite volume method (PG-FVM), as already investigated in [23]. From the perspective of the finite volume scheme we argue that wrong discrete normal directions at the interface are the origin of the oscillations. The new perspective of normal vectors suggests to look at gradients rather than values of the enriching shape functions. The crucial parameter of the enrichment functions therefore is the gradient of the shape functions and especially the one of the test space. The distinguishing feature of our construction therefore is an enrichment that is based on the choice of shape functions with consistent gradients. These derivations finally yield a fitted scheme for the immersed interface. We further propose a strategy ensuring a well-conditioned system independent of the location of the interface. The enriched spaces can be used within any existing finite element discretization for the Navier-Stokes equation. Our numerical tests were conducted using the PG-FVM. We demonstrate that the enriched spaces are able to eliminate the oscillations.