Refine
Document Type
- Article (6)
Language
- English (6)
Has Fulltext
- yes (6)
Is part of the Bibliography
- no (6)
Institute
We present a study of the elliptic flow and RAA of D and D¯ mesons in Au+Au collisions at FAIR energies. We propagate the charm quarks and the D mesons following a previously applied Langevin dynamics. The evolution of the background medium is modeled in two different ways: (I) we use the UrQMD hydrodynamics + Boltzmann transport hybrid approach including a phase transition to QGP and (II) with the coarse-graining approach employing also an equation of state with QGP. The latter approach has previously been used to describe di-lepton data at various energies very successfully. This comparison allows us to explore the effects of partial thermalization and viscous effects on the charm propagation. We explore the centrality dependencies of the collisions, the variation of the decoupling temperature and various hadronization parameters. We find that the initial partonic phase is responsible for the creation of most of the D/D¯ mesons elliptic flow and that the subsequent hadronic interactions seem to play only a minor role. This indicates that D/D¯ mesons elliptic flow is a smoking gun for a partonic phase at FAIR energies. However, the results suggest that the magnitude and the details of the elliptic flow strongly depend on the dynamics of the medium and on the hadronization procedure, which is related to the medium properties as well. Therefore, even at FAIR energies the charm quark might constitute a very useful tool to probe the quark–gluon plasma and investigate its physics.
At the earliest times after a heavy-ion collision, the magnetic field created by the spectator nucleons will generate an extremely strong, albeit rapidly decreasing in time, magnetic field. The impact of this magnetic field may have detectable consequences, and is believed to drive anomalous transport effects like the Chiral Magnetic Effect (CME). We detail an exploratory study on the effects of a dynamical magnetic field on the hydrodynamic medium created in the collisions of two ultrarelativistic heavy-ions, using the framework of numerical ideal MagnetoHydroDynamics (MHD) with the ECHO-QGP code. In this study, we consider a magnetic field captured in a conducting medium, where the conductivity can receive contributions from the electromagnetic conductivity σ and the chiral magnetic conductivity σχ. We first study the elliptic flow of pions, which we show is relatively unchanged by the introduction of a magnetic field. However, by increasing the magnitude of the magnetic field, we find evidence for an enhancement of the elliptic flow in peripheral collisions. This effect is stronger at RHIC than the LHC, and it is evident already at intermediate collision centralities. Next, we explore the impact of the chiral magnetic conductivity on electric charges produced at the edges of the fireball. This initial σχ can be understood as a long-wavelength effective description of chiral fermion production. We then demonstrate that this chiral charge, when transported by the MHD medium, produces a charge dipole perpendicular to the reaction plane which extends a few units in rapidity. Assuming charge conservation at the freeze-out surface, we show that the produced charge imbalance can have measurable effects on some experimental observables, like v1 or ⟨sinϕ⟩. This demonstrates the ability of a MHD fluid to transport the signature of the initial chiral magnetic fields to late times. We also comment on the limitations of the ideal MHD approximation and detail how further development of a dissipative-resistive model can provide a more realistic description of the QGP.
To assess the degree of equilibration of the matter created in heavy-ion reactions at low to intermediate beam energies, a hadronic transport approach (SMASH) is employed. By using a coarse-graining method, we compute the energy momentum tensor of the system at fixed time steps and evaluate the degree of isotropy of the diagonal terms and the relative magnitude of the off-diagonal terms. This study focuses mostly on Au+Au collisions in the energy range s√NN
= 2.4–7.7 GeV, but central collisions of lighter ions like C+C, Ar+KCl and Ag+Ag are considered as well. We find that the conditions concerning local equilibration for a hydrodynamic description are reasonably satisfied in a large portion of the system for a significant amount of time (several fm/c) when considering the average evolution of many events, yet they are rarely fulfilled on an event by event basis. This is relevant for the application of hybrid approaches at low beam energies as they are or will be reached by the HADES experiment at GSI, the future CBM experiment at FAIR as well as the beam energy scan program at RHIC.
We introduce a novel approach based on elas- tic and inelastic scattering rates to extract the hyper-surface of the chemical freeze-out from a hadronic transport model in the energy range from Elab = 1.23 AGeV to √sNN = 62.4 GeV. For this study, the Ultra-relativistic Quantum Molecular Dynamics (UrQMD) model combined with a coarse-graining method is employed. The chemical freeze- out distribution is reconstructed from the pions through sev- eral decay and re-formation chains involving resonances and taking into account inelastic, pseudo-elastic and string excita- tion reactions. The extracted average temperature and baryon chemical potential are then compared to statistical model analysis. Finally we investigate various freeze-out criteria suggested in the literature. We confirm within this micro- scopic dynamical simulation, that the chemical freeze-out at all energies coincides with ⟨E⟩/⟨N⟩ ≈ 1 GeV, while other criteria, like s/T 3 = 7 and nB +nB ̄ ≈ 0.12 fm−3 are limited to higher collision energies.
We introduce a novel approach based on elastic and inelastic scattering rates to extract the hyper-surface of the chemical freeze-out from a hadronic transport simulation. We use the Ultra-relativistic Quantum Molecular Dynamics (UrQMD) model to extract the chemical freeze-out hyper-surface of pions and kaons in the energy range from Elab = 1:23A GeV to √SNN = 7.7 GeV. By employing a coarse-graining procedure, we can extract the local temperature T and baryo-chemical potential μB on the chemical freeze-out surface and compare them to results from statistical model analysis. We find good agreement between the pion chemical freeze-out line extracted from the simulation and the freeze-out line from the statistical model extracted from data. In addition the simulations also hint towards the existence of a flavor hierarchy similar to the one observed in recent lattice QCD calculations.
The HADES experiment at GSI has recently provided data on the flow coefficients v1,..., v4 for protons in Au+Au reactions at Elab = 1.23 AGeV (or √sNN = 2.4 GeV). This data allows to estimate the shear viscosity over entropy density ratio, η/s at low energies via a coarse graining analysis of the UrQMD transport simulations of the flow harmonics in comparison to the experimental data. By this we can provide for the first time an estimate of η/s ≈ 0.65 ± 0.15 (or (8 ± 2)(4π)−1) at such low energies.