Refine
Language
- English (8)
Has Fulltext
- yes (8)
Is part of the Bibliography
- no (8)
Keywords
- Human behaviour (1)
- belief revision (1)
- cognitive conflict (1)
- executive functions (1)
- fMRI (1)
- hippocampus (1)
- memory (1)
- prefrontal cortex (1)
- schooling (1)
- subsequent memory effect (1)
Misconceptions about scientific concepts often prevail even if learners are confronted with conflicting evidence. This study tested the facilitative role of surprise in children’s revision of misconceptions regarding water displacement in a sample of German children (N = 94, aged 6–9 years, 46% female). Surprise was measured via the pupil dilation response. It was induced by letting children generate predictions before presenting them with outcomes that conflicted with their misconception. Compared to a control condition, generating predictions boosted children’s surprise and led to a greater revision of misconceptions (d = 0.56). Surprise further predicted successful belief revision during the learning phase. These results suggest that surprise increases the salience of a cognitive conflict, thereby facilitating the revision of misconceptions.
This study examined age‐related differences in the effectiveness of two generative learning strategies (GLSs). Twenty‐five children aged 9–11 and 25 university students aged 17–29 performed a facts learning task in which they had to generate either a prediction or an example before seeing the correct result. We found a significant Age × Learning Strategy interaction, with children remembering more facts after generating predictions rather than examples, whereas both strategies were similarly effective in adults. Pupillary data indicated that predictions stimulated surprise, whereas the effectiveness of example‐based learning correlated with children’s analogical reasoning abilities. These findings suggest that there are different cognitive prerequisites for different GLSs, which results in varying degrees of strategy effectiveness by age.
This study investigated whether prompting children to generate predictions about an outcome facilitates activation of prior knowledge and improves belief revision. 51 children aged 9–12 were tested on two experimental tasks in which generating a prediction was compared to closely matched control conditions, as well as on a test of executive functions (EF). In Experiment 1, we showed that children exhibited a pupillary surprise response to events that they had predicted incorrectly, hypothesized to reflect the transient release of noradrenaline in response to cognitive conflict. However, children's surprise response was not associated with better belief revision, in contrast to a previous study involving adults. Experiment 2 revealed that, while generating predictions helped children activate their prior knowledge, only those with better inhibitory control skills learned from incorrectly predicted outcomes. Together, these results suggest that good inhibitory control skills are needed for learning through cognitive conflict. Thus, generating predictions benefits learning – but only among children with sufficient EF capacities to harness surprise for revising their beliefs.
Humans accumulate knowledge throughout their entire lives. In what ways does this accumulation of knowledge influence learning of new information? Are there age-related differences in the way prior knowledge is leveraged for remembering new information? We review studies that have investigated these questions, focusing on those that have used the memory congruency effect, which provides a quantitative measure of memory advantage because of prior knowledge. Regarding the first question, evidence suggests that the accumulation of knowledge is a key factor promoting the development of memory across childhood and counteracting some of the decline in older age. Regarding the second question, evidence suggests that, if available knowledge is controlled for, age-related differences in the memory congruency effect largely disappear. These results point to an age-invariance in the way prior knowledge is leveraged for learning new information. Research on neural mechanisms and implications for application are discussed.
We tested 6–7-year-olds, 18–22-year-olds, and 67–74-year-olds on an associative memory task that consisted of knowledge-congruent and knowledge-incongruent object–scene pairs that were highly familiar to all age groups. We compared the three age groups on their memory congruency effect (i.e., better memory for knowledge-congruent associations) and on a schema bias score, which measures the participants’ tendency to commit knowledge-congruent memory errors. We found that prior knowledge similarly benefited memory for items encoded in a congruent context in all age groups. However, for associative memory, older adults and, to a lesser extent, children overrelied on their prior knowledge, as indicated by both an enhanced congruency effect and schema bias. Functional Magnetic Resonance Imaging (fMRI) performed during memory encoding revealed an age-independent memory x congruency interaction in the ventromedial prefrontal cortex (vmPFC). Furthermore, the magnitude of vmPFC recruitment correlated positively with the schema bias. These findings suggest that older adults are most prone to rely on their prior knowledge for episodic memory decisions, but that children can also rely heavily on prior knowledge that they are well acquainted with. Furthermore, the fMRI results suggest that the vmPFC plays a key role in the assimilation of new information into existing knowledge structures across the entire lifespan. vmPFC recruitment leads to better memory for knowledge-congruent information but also to a heightened susceptibility to commit knowledge-congruent memory errors, in particular in children and older adults.
From age 5 to 7, there are remarkable improvements in children’s cognitive abilities (“5–7 shift”). In many countries, including Germany, formal schooling begins in this age range. It is, thus, unclear to what extent exposure to formal schooling contributes to the “5–7 shift.” In this longitudinal study, we investigated if schooling acts as a catalyst of maturation. We tested 5-year-old children who were born close to the official cutoff date for school entry and who were still attending a play-oriented kindergarten. One year later, the children were tested again. Some of the children had experienced their first year of schooling whereas the others had remained in kindergarten. Using 2 functional magnetic resonance imaging tasks that assessed episodic memory formation (i.e., subsequent memory effect), we found that children relied strongly on the medial temporal lobe (MTL) at both time points but not on the prefrontal cortex (PFC). In contrast, older children and adults typically show subsequent memory effects in both MTL and PFC. Both children groups improved in their memory performance, but there were no longitudinal changes nor group differences in neural activation. We conclude that successful memory formation in this age group relies more heavily on the MTL than in older age groups.