Refine
Document Type
- Article (3)
Language
- English (3)
Has Fulltext
- yes (3)
Is part of the Bibliography
- no (3)
Keywords
- Asymmetric Catalysis (1)
- Bisamidines (1)
- Brønsted base (1)
- Crystal Structure (1)
- Diels- Alder reaction (1)
- Fmoc solid phase peptide synthesis (1)
- Hydroquinone (1)
- Organocatalysis (1)
- Quinhydrone (1)
- Redoxactive Ligands (1)
Institute
C2-symmetric bisamidines : chiral Brønsted bases catalysing the Diels-Alder reaction of anthrones
(2008)
C2-symmetric bisamidines 8 have been tested as chiral Brønsted bases in the Diels- Alder reaction of anthrones and N-substituted maleimides. High yields of cycloadducts and significant asymmetric inductions up to 76% ee are accessible. The proposed mechanism involves proton transfer between anthrone and bisamidine, association of the resulting ions and finally a cycloaddition step stereoselectively controlled by the chiral ion pair.
A mild synthetic method for N-formyl-Met-Leu-Phe-OH (1) is described. After Fmoc solid phase peptide synthesis, on-bead formylation and HPLC purification, more than 30 mg of the fully 13C/15N-labelled tripeptide 1 could be isolated in a typical batch. This peptide can be easily crystallised and is therefore well suited as a standard sample for setting up solid-state NMR experiments.
Pyrazolyl-substituted 1,4-dihydroxybenzene and 1,4-dihydroxynaphthene derivatives have been synthesized by reaction of 1,4-benzoquinone and 1,4-naphthoquinone, respectively, with pyrazole. Cyclovoltammetric measurements have shown that 1,4-benzoquinone possesses the potential to oxidize 2-(pyrazol-1-yl)- and 2,5-bis(pyrazol-1-yl)-1,4-dihydroxybenzene. The 2,5-bis(pyrazol-1-yl)- 1,4-dihydroxybenzene reacts with air to give quantitatively black insoluble 2,5-bis(pyrazol-1-yl)-1,4- quinhydrone. Black crystals of 2,5-bis(pyrazol-1-yl)-1,4-quinhydrone suitable for X-ray diffraction were grown from methanol at ambient temperature (monoclinic C2/c). The poor yields of pyrazolylsubstituted 1,4-dihydroxybenzene and 1,4-dihydroxynaphthene derivatives can be explained by the formation of insoluble black quinhydrons in the reaction of benzoquinone and naphthoquinone with pyrazole. The dianions of 2-(pyrazol-1-yl)- and 2,5-bis(pyrazol-1-yl)-1,4-dihydroxybenzene react with oxygen to give the corresponding semiquinone anions. 2,5-Bis(pyrazol-1-yl)-1,4-benzoquinone shows two reversible one-electron reduction processes in cyclovoltammetric measurements, whereas pyrazolyl-substituted 1,4-dihdroxybenzene and -naphthene derivatives undergo irreversibile electrontransfer processes.