Refine
Year of publication
Document Type
- Article (70)
- Contribution to a Periodical (1)
- Preprint (1)
Has Fulltext
- yes (72)
Is part of the Bibliography
- no (72)
Keywords
- inflammation (10)
- pain (8)
- macrophage (4)
- data science (3)
- endocannabinoids (3)
- neuropathic pain (3)
- spinal cord (3)
- Cancer (2)
- Cirrhosis (2)
- G2A (2)
Institute
- Medizin (61)
- Zentrum für Arzneimittelforschung, Entwicklung und Sicherheit (15)
- Pharmazie (12)
- Sonderforschungsbereiche / Forschungskollegs (5)
- Biowissenschaften (4)
- Biochemie, Chemie und Pharmazie (3)
- Biochemie und Chemie (2)
- Interdisziplinäres Zentrum für Neurowissenschaften Frankfurt (IZNF) (1)
- Präsidium (1)
DNA methylation is a major regulatory process of gene transcription, and aberrant DNA methylation is associated with various diseases including cancer. Many compounds have been reported to modify DNA methylation states. Despite increasing interest in the clinical application of drugs with epigenetic effects, and the use of diagnostic markers for genome-wide hypomethylation in cancer, large-scale screening systems to measure the effects of drugs on DNA methylation are limited. In this study, we improved the previously established fluorescence polarization-based global DNA methylation assay so that it is more suitable for application to human genomic DNA. Our methyl-sensitive fluorescence polarization (MSFP) assay was highly repeatable (inter-assay coefficient of variation = 1.5%) and accurate (r2 = 0.99). According to signal linearity, only 50–80 ng human genomic DNA per reaction was necessary for the 384-well format. MSFP is a simple, rapid approach as all biochemical reactions and final detection can be performed in one well in a 384-well plate without purification steps in less than 3.5 hours. Furthermore, we demonstrated a significant correlation between MSFP and the LINE-1 pyrosequencing assay, a widely used global DNA methylation assay. MSFP can be applied for the pre-screening of compounds that influence global DNA methylation states and also for the diagnosis of certain types of cancer.
Epoxyeicotrienoic acids (EETs) are cytochrome P450-dependent anti-hypertensive and anti-inflammatory derivatives of arachidonic acid, which are highly abundant in the kidney and considered reno-protective. EETs are degraded by the enzyme soluble epoxide hydrolase (sEH) and sEH inhibitors are considered treatment for chronic renal failure (CRF). We determined whether sEH inhibition attenuates the progression of CRF in the 5/6-nephrectomy model (5/6-Nx) in mice. 5/6-Nx mice were treated with a placebo, an ACE-inhibitor (Ramipril, 40 mg/kg), the sEH-inhibitor cAUCB or the CYP-inhibitor fenbendazole for 8 weeks. 5/6-Nx induced hypertension, albuminuria, glomerulosclerosis and tubulo-interstitial damage and these effects were attenuated by Ramipril. In contrast, cAUCB failed to lower the blood pressure and albuminuria was more severe as compared to placebo. Plasma EET-levels were doubled in 5/6 Nx-mice as compared to sham mice receiving placebo. Renal sEH expression was attenuated in 5/6-Nx mice but cAUCB in these animals still further increased the EET-level. cAUCB also increased 5-HETE and 15-HETE, which derive from peroxidation or lipoxygenases. Similar to cAUCB, CYP450 inhibition increased HETEs and promoted albuminuria. Thus, sEH-inhibition failed to elicit protective effects in the 5/6-Nx model and showed a tendency to aggravate the disease. These effects might be consequence of a shift of arachidonic acid metabolism into the lipoxygenase pathway.
The experience of pain is mediated by a specialized sensory system, the nociceptive system. There is considerable evidence that the cGMP/cGMP kinase I (cGKI) signaling pathway modulates the nociceptive processing within the spinal cord. However, downstream targets of cGKI in this context have not been identified to date. In this study we investigated whether cysteine-rich protein 2 (CRP2) is a downstream effector of cGKI in the spinal cord and is involved in nociceptive processing. Immunohistochemistry of the mouse spinal cord revealed that CRP2 is expressed in superficial laminae of the dorsal horn. CRP2 is colocalized with cGKI and with markers of primary afferent C fibers. Importantly, the majority of CRP2 mRNA-positive dorsal root ganglion (DRG) neurons express cGKI and CRP2 is phosphorylated in a cGMP-dependent manner. To elucidate the functional role of CRP2 in nociception, we investigated the nociceptive behavior of CRP2-deficient (CRP2-/-) mice. Touch perception and acute thermal nociception were unaltered in CRP2-/- mice. However, CRP2-/- mice showed an increased nociceptive behavior in models of persistent pain as compared to wild type mice. Intrathecal administration of cGKI activating cGMP analogs increased the nociceptive behavior in wild type but not in CRP2-/- mice, indicating that the presence of CRP2 was essential for cGMP/cGKI-mediated nociception. These data indicate that CRP2 is a new downstream effector of cGKI-mediated spinal nociceptive processing and point to an inhibitory role of CRP2 in the generation of inflammatory pain.
Nerve injury leads to sensitization mechanisms in the peripheral and central nervous system which involve transcriptional and post-transcriptional modifications in sensory nerves. To assess protein regulations in the spinal cord after injury of the sciatic nerve in the Spared Nerve Injury model (SNI) we performed a proteomic analysis using 2D-difference gel electrophoresis (DIGE) technology. Among approximately 2300 protein spots separated on each gel we detected 55 significantly regulated proteins after SNI whereof 41 were successfully identified by MALDI-TOF MS. Out of the proteins which were regulated in the DIGE analyses after SNI we focused on the carboxypeptidase A inhibitor latexin because protease dysfunctions contribute to the development of neuropathic pain. Latexin protein expression was reduced after SNI which could be confirmed by Western Blot analysis, quantitative RT-PCR and in-situ hybridisation. The decrease of latexin was associated with an increase of the activity of carboxypeptidase A indicating that the balance between latexin and carboxypeptidase A was impaired in the spinal cord after peripheral nerve injury due to a loss of latexin expression in spinal cord neurons. This may contribute to the development of cold allodynia because normalization of neuronal latexin expression in the spinal cord by AAV-mediated latexin transduction or administration of a small molecule carboxypeptidase A inhibitor significantly reduced acetone-evoked nociceptive behavior after SNI. Our results show the usefulness of proteomics as a screening tool to identify novel mechanisms of nerve injury evoked hypernociception and suggest that carboxypeptidase A inhibition might be useful to reduce cold allodynia.
First paragraph (this article has no abstract) Persistent stimulation of nociceptors results in sensitization of nociceptive sensory neurons, which is associated with hyperalgesia and allodynia. The release of NO and subsequent synthesis of cGMP in the spinal cord are involved in this process. cGMP-dependent protein kinase I (PKG-I) has been suggested to act as a downstream target of cGMP, but its exact role in nociception hadn't been characterized yet. To further evaluate the NO/cGMP/PKG-I pathway in nociception we assessed the effects of PKG-I inhibiton and activaton in the rat formalin assay and analyzed the nociceptive behavior of PKG-I-/- mice. Open access article.
Oral presentation from 4th International Conference of cGMP Generators, Effectors and Therapeutic Implications ; Regensburg, Germany. 19–21 June 2009 Background: An exaggerated pain sensitivity is the dominant feature of inflammatory and neuropathic pain both in the clinical setting and in experimental animal models. It manifests as pain in response to normally innocuous stimuli (allodynia), increased response to noxious stimuli (hyperalgesia) or spontaneous pain, and can persist long after the initial injury is resolved. Research over the last decades has revealed that several signaling pathways in the spinal cord essentially contribute to the pain sensitization. To test the contribution of cGMP produced by NO-sensitive guanylyl cyclase (NO-GC) to pain sensitization, we investigated the localization of NO-GC in the spinal cord and in dorsal root ganglia, and we characterized the nociceptive behavior of mice deficient in NO-GC (GC-KO mice). Results: We show that NO-GC (β1 subunit) is distinctly expressed in neurons of the mouse spinal cord, while its distribution in dorsal root ganglia is restricted to non-neuronal cells. GC-KO mice exhibited a considerably reduced nociceptive behavior in models of inflammatory or neuropathic pain, but their responses to acute pain were not impaired. Moreover, GC-KO mice failed to develop pain sensitization induced by spinal administration of drugs releasing NO. Surprisingly, during spinal nociceptive processing cGMP produced by NO-GC may activate signaling pathways different from cGMP-dependent protein kinase I (cGKI), while cGKI can be activated by natriuretic peptide receptor-B (NPR-B) dependent cGMP production. Conclusion: Taken together, our results provide evidence that NO-GC has a dominant role in the development of exaggerated pain sensitivity during inflammatory and neuropathic pain. Furthermore, beside the NO-mediated cGMP synthesis, cGMP produced by NPR-B contributes to pain sensitization by activation of cGKI.
Background
Cytochrome-P450 (CYP450) epoxygenases metabolise arachidonic acid (AA) into four different biologically active epoxyeicosatrienoic acid (EET) regioisomers. Three of the EETs (i.e., 8,9-, 11,12- and 14,15-EET) are rapidly hydrolysed by the enzyme soluble epoxide hydrolase (sEH). Here, we investigated the role of sEH in nociceptive processing during peripheral inflammation.
Results
In dorsal root ganglia (DRG), we found that sEH is expressed in medium and large diameter neurofilament 200-positive neurons. Isolated DRG-neurons from sEH-/- mice showed higher EET and lower DHET levels. Upon AA stimulation, the largest changes in EET levels occurred in culture media, indicating both that cell associated EET concentrations quickly reach saturation and EET-hydrolyzing activity mostly effects extracellular EET signaling. In vivo, DRGs from sEH-deficient mice exhibited elevated 8,9-, 11,12- and 14,15-EET-levels. Interestingly, EET levels did not increase at the site of zymosan-induced inflammation. Cellular imaging experiments revealed direct calcium flux responses to 8,9-EET in a subpopulation of nociceptors. In addition, 8,9-EET sensitized AITC-induced calcium increases in DRG neurons and AITC-induced calcitonin gene related peptide (CGRP) release from sciatic nerve axons, indicating that 8,9-EET sensitizes TRPA1-expressing neurons, which are known to contribute to mechanical hyperalgesia. Supporting this, sEH-/- mice showed increased nociceptive responses to mechanical stimulation during zymosan-induced inflammation and 8,9-EET injection reduced mechanical thresholds in naive mice.
Conclusion
Our results show that the sEH can regulate mechanical hyperalgesia during inflammation by inactivating 8,9-EET, which sensitizes TRPA1-expressing nociceptors. Therefore we suggest that influencing the CYP450 pathway, which is actually highly considered to treat cardiovascular diseases, may cause pain side effects.
Oxaliplatin is a third-generation platinum-based anticancer drug that is widely used as first-line treatment for colorectal carcinoma. Patients treated with oxaliplatin develop an acute peripheral pain several hours after treatment, mostly characterized by cold allodynia as well as a long-term chronic neuropathy. These two phenomena seem to be causally connected. However, the underlying mechanisms that trigger the acute peripheral pain are still poorly understood. Here we show that the activity of the transient receptor potential melastatin 8 (TRPM8) channel but not the activity of any other member of the TRP channel family is transiently increased 1 h after oxaliplatin treatment and decreased 24 h after oxaliplatin treatment. Mechanistically, this is connected with activation of the phospholipase C (PLC) pathway and depletion of phosphatidylinositol 4,5-bisphosphate (PIP2) after oxaliplatin treatment. Inhibition of the PLC pathway can reverse the decreased TRPM8 activity as well as the decreased PIP2-concentrations after oxaliplatin treatment. In summary, these results point out transient changes in TRPM8 activity early after oxaliplatin treatment and a later occurring TRPM8 channel desensitization in primary sensory neurons. These mechanisms may explain the transient cold allodynia after oxaliplatin treatment and highlight an important role of TRPM8 in oxaliplatin-induced acute and neuropathic pain.
Ultraviolet-B (UVB)-induced inflammation produces a dose-dependent mechanical and thermal hyperalgesia in both humans and rats, most likely via inflammatory mediators acting at the site of injury. Previous work has shown that the gene expression of cytokines and chemokines is positively correlated between species and that these factors can contribute to UVB-induced pain. In order to investigate other potential pain mediators in this model we used RNA-seq to perform genome-wide transcriptional profiling in both human and rat skin at the peak of hyperalgesia. In addition we have also measured transcriptional changes in the L4 and L5 DRG of the rat model. Our data show that UVB irradiation produces a large number of transcriptional changes in the skin: 2186 and 3888 genes are significantly dysregulated in human and rat skin, respectively. The most highly up-regulated genes in human skin feature those encoding cytokines (IL6 and IL24), chemokines (CCL3, CCL20, CXCL1, CXCL2, CXCL3 and CXCL5), the prostanoid synthesising enzyme COX-2 and members of the keratin gene family. Overall there was a strong positive and significant correlation in gene expression between the human and rat (R = 0.8022). In contrast to the skin, only 39 genes were significantly dysregulated in the rat L4 and L5 DRGs, the majority of which had small fold change values. Amongst the most up-regulated genes in DRG were REG3B, CCL2 and VGF. Overall, our data shows that numerous genes were up-regulated in UVB irradiated skin at the peak of hyperalgesia in both human and rats. Many of the top up-regulated genes were cytokines and chemokines, highlighting again their potential as pain mediators. However many other genes were also up-regulated and might play a role in UVB-induced hyperalgesia. In addition, the strong gene expression correlation between species re-emphasises the value of the UVB model as translational tool to study inflammatory pain.