### Refine

#### Year of publication

#### Document Type

- Article (31)

#### Language

- English (31)

#### Has Fulltext

- yes (31)

#### Is part of the Bibliography

- no (31)

#### Institute

- Physik (31)

We present calculations for the impact-parameter dependence of K-shell ionization rates in p¯-Cu and in p¯-Ag collisions at various projectile energies. We show that the effect of the attractive Coulomb potential on the Rutherford trajectory and the antibinding effect caused by the negative charge of the antiproton result in a considerable increase of the ionization probability. Total ionization cross sections for proton and antiproton projectiles are compared with each other and with experimental ionization cross sections for protons.

A careful investigation of different corrections to binding energies of electrons in almost critical fields is performed. We investigate quantitatively the influence of the nuclear charge parameters, nuclear mass, degree of ionization on the value of the critical charge of the nucleus. Rather qualitative arguments are given to establish the contribution of the quantumelectrodynamic corrections, which are found to be small. Some phenomenological modifications of QED are quantitatively investigated and found to be of negligible influence on the value of the critical field. For heavy ion collisions with Z1+Z2>Zcr the critical separations between ions are given as results of precise solutions of the relativistic two coulomb center problem. Corrections due to electron-electron interaction are considered. We find (with present theoretical accuracy) Zcr=173±2, in the heavy ion collisions Rcr(U-U) = 34.7±2 fm and Rcr (U-Cf)=47.7±2 fm. We shortly consider the possibility of spontaneous muon production in muonic supercritical fields.

Using relativistic Green’s-function techniques we examined single-electron excitations from the occupied Dirac sea in the presence of strong external fields. The energies of these excited states are determined taking into account the electron-electron interaction. We also evaluate relativistic transition strengths incorporating retardation, which represents a direct measure of correlation effects. The shifts in excitation energies are computed to be lower than 0.5%, while the correlated transition strengths never deviate by more than 10% from their bare values. A major conclusion is that we found no evidence for collectivity in the electron-positron field around heavy and superheavy nuclei.

A first testing ground for QED in the combined presence of a strong Coulomb field and a strong magnetic field is provided by the precise measurement of the hyperfine structure splitting of hydrogenlike 209Bi. We present a complete calculation of the one-loop self-energy correction to the first-order hyperfine interaction for various nuclear charges. In the low-Z regime we almost perfectly agree with the Z alpha expansion, but for medium and high Z there is a substantial deviation.

Conversion processes in light nuclei with transition energies above the e+, e- pair creation threshold are investigated within an analytical framework. In particular, we evaluate the ratio of electron transition probabilities from the negative energy continuum into the atomic K shell and into the positive energy continuum, respectively. The possible role of monoenergetic positron conversion with respect to the striking peak structures observed in e+ spectra from very heavy collision systems is examined.

A method is presented to define unique continuum states for the two-center Dirac Hamiltonian. In the spherical limit these states become the familiar angular-momentum eigenstates of the radial Coulomb potential. The different states for a fixed total energy ‖E‖>m may be distinguished by considering the asymptotic spin-angular distribution of states with unique scattering phases. The first numerical solutions of the two-center Dirac equation for continuum states are presented.

Ionization, pair creation, and electron excitations in relativistic heavy-ion collisions are investigated in the framework of the coupled-channel formalism. Collisions between heavy projectiles and Pb82+ are considered for various bombarding energies in the region E=500 up to 2000 MeV/u. Useful symmetry relations for the matrix elements are derived and the influence of gauge transformations onto the coupled-channel equations is explored.

We consider the contribution of nuclear polarization to the Lamb shift of K- and L-shell electrons in heavy atoms and quasiatoms. Our formal approach is based on the concept of effective photon propagators with nuclear-polarization insertions treating effects of nuclear polarization on the same footing as usual QED radiative corrections. We explicitly derive the modification of the photon propagator for various collective nuclear excitations and calculate the corresponding effective self-energy shift perturbatively. The energy shift of the 1s1/2 state in 92238U due to virtual excitation of nuclear rotational states is shown to be a considerable correction for atomic high-precision experiments. In contrast to this, nuclear-polarization effects are of minor importance for Lamb-shift studies in 82208Pb.