Refine
Document Type
- Article (10)
Language
- English (10)
Has Fulltext
- yes (10)
Is part of the Bibliography
- no (10)
Keywords
- Organ dysfunctions (2)
- (cardiac) surgery (1)
- 1,25-Dihydroxyvitamin D (1)
- ARDS (1)
- Abdominal surgery (1)
- Biomarkers (1)
- Blood (1)
- COVID-19 (1)
- Cardiac surgery patients (1)
- Cardiopulmonary bypass (1)
In contrast to several smaller studies, which demonstrate that remote ischemic preconditioning (RIPC) reduces myocardial injury in patients that undergo cardiovascular surgery, the RIPHeart study failed to demonstrate beneficial effects of troponin release and clinical outcome in propofol-anesthetized cardiac surgery patients. Therefore, we addressed the potential biochemical mechanisms triggered by RIPC. This is a predefined prospective sub-analysis of the randomized and controlled RIPHeart study in cardiac surgery patients (n = 40) that was recently published. Blood samples were drawn from patients prior to surgery, after RIPC of four cycles of 5 min arm ischemia/5 min reperfusion (n = 19) and the sham (n = 21) procedure, after connection to cardiopulmonary bypass (CPB), at the end of surgery, 24 h postoperatively, and 48 h postoperatively for the measurement of troponin T, macrophage migration inhibitory factor (MIF), stromal cell-derived factor 1 (CXCL12), IL-6, CXCL8, and IL-10. After RIPC, right atrial tissue samples were taken for the measurement of extracellular-signal regulated kinase (ERK1/2), protein kinase B (AKT), Glycogen synthase kinase 3 (GSK-3β), protein kinase C (PKCε), and MIF content. RIPC did not significantly reduce the troponin release when compared with the sham procedure. MIF serum levels intraoperatively increased, peaking at intensive care unit (ICU) admission (with an increase of 48.04%, p = 0.164 in RIPC; and 69.64%, p = 0.023 over the baseline in the sham procedure), and decreased back to the baseline 24 h after surgery, with no differences between the groups. In the right atrial tissue, MIF content decreased after RIPC (1.040 ± 1.032 Arbitrary units [au] in RIPC vs. 2.028 ± 1.631 [au] in the sham procedure, p < 0.05). CXCL12 serum levels increased significantly over the baseline at the end of surgery, with no differences between the groups. ERK1/2, AKT, GSK-3β, and PKCɛ phosphorylation in the right atrial samples were no different between the groups. No difference was found in IL-6, CXCL8, and IL10 serum levels between the groups. In this cohort of cardiac surgery patients that received propofol anesthesia, we could not show a release of potential mediators of signaling, nor an effect on the inflammatory response, nor an activation of well-established protein kinases after RIPC. Based on these data, we cannot exclude that confounding factors, such as propofol, may have interfered with RIPC.
Nutrition support is a necessary therapy for critically ill cardiac surgery patients. However, conclusive evidence for this population, consisting of well-conducted clinical trials is lacking. To clarify optimal strategies to improve outcomes, an international multidisciplinary group of 25 experts from different clinical specialties from Germany, Canada, Greece, USA and Russia discussed potential approaches to identify patients who may benefit from nutrition support, when best to initiate nutrition support, and the potential use of pharmaco-nutrition to modulate the inflammatory response to cardiopulmonary bypass. Despite conspicuous knowledge and evidence gaps, a rational nutritional support therapy is presented to benefit patients undergoing cardiac surgery.
Characterization of blunt chest trauma in a long-term porcine model of severe multiple trauma
(2016)
Chest trauma has a significant relevance on outcome after severe trauma. Clinically, impaired lung function typically occurs within 72 hours after trauma. However, the underlying pathophysiological mechanisms are still not fully elucidated. Therefore, we aimed to establish an experimental long-term model to investigate physiological, morphologic and inflammatory changes, after severe trauma. Male pigs (sus scrofa) sustained severe trauma (including unilateral chest trauma, femur fracture, liver laceration and hemorrhagic shock). Additionally, non-injured animals served as sham controls. Chest trauma resulted in severe lung damage on both CT and histological analyses. Furthermore, severe inflammation with a systemic increase of IL-6 (p = 0.0305) and a local increase of IL-8 in BAL (p = 0.0009) was observed. The pO2/FiO2 ratio in trauma animals decreased over the observation period (p < 0.0001) but not in the sham group (p = 0.2967). Electrical Impedance Tomography (EIT) revealed differences between the traumatized and healthy lung (p < 0.0001). In conclusion, a clinically relevant, long-term model of blunt chest trauma with concomitant injuries has been developed. This reproducible model allows to examine local and systemic consequences of trauma and is valid for investigation of potential diagnostic or therapeutic options. In this context, EIT might represent a radiation-free method for bedside diagnostics.
Background: Macrophage Migration Inhibitory Factor (MIF) is highly elevated after cardiac surgery and impacts the postoperative inflammation. The aim of this study was to analyze whether the polymorphisms CATT5–7 (rs5844572/rs3063368,“-794”) and G>C single-nucleotide polymorphism (rs755622,-173) in the MIF gene promoter are related to postoperative outcome. Methods: In 1116 patients undergoing cardiac surgery, the MIF gene polymorphisms were analyzed and serum MIF was measured by ELISA in 100 patients. Results: Patients with at least one extended repeat allele (CATT7) had a significantly higher risk of acute kidney injury (AKI) compared to others (23% vs. 13%; OR 2.01 (1.40–2.88), p = 0.0001). Carriers of CATT7 were also at higher risk of death (1.8% vs. 0.4%; OR 5.12 (0.99–33.14), p = 0.026). The GC genotype was associated with AKI (20% vs. GG/CC:13%, OR 1.71 (1.20–2.43), p = 0.003). Multivariate analyses identified CATT7 predictive for AKI (OR 2.13 (1.46–3.09), p < 0.001) and death (OR 5.58 (1.29–24.04), p = 0.021). CATT7 was associated with higher serum MIF before surgery (79.2 vs. 50.4 ng/mL, p = 0.008). Conclusion: The CATT7 allele associates with a higher risk of AKI and death after cardiac surgery, which might be related to chronically elevated serum MIF. Polymorphisms in the MIF gene may constitute a predisposition for postoperative complications and the assessment may improve risk stratification and therapeutic guidance.
Introduction: Balanced fluid replacement solutions can possibly reduce the risks for electrolyte imbalances, for acid-base imbalances, and thus for renal failure. To assess the intraoperative change of base excess (BE) and chloride in serum after treatment with either a balanced gelatine/electrolyte solution or a non-balanced gelatine/electrolyte solution, a prospective, controlled, randomized, double-blind, dual centre phase III study was conducted in two tertiary care university hospitals in Germany.
Material and methods: 40 patients of both sexes, aged 18 to 90 years, who were scheduled to undergo elective abdominal surgery with assumed intraoperative volume requirement of at least 15 mL/kg body weight gelatine solution were included. Administration of study drug was performed intravenously according to patients need. The trigger for volume replacement was a central venous pressure (CVP) minus positive end-expiratory pressure (PEEP) <10 mmHg (CVP <10 mmHg). The crystalloid:colloid ratio was 1:1 intra- and postoperatively. The targets for volume replacement were a CVP between 10 and 14 mmHg minus PEEP after treatment with vasoactive agent and mean arterial pressure (MAP) > 65 mmHg.
Results: The primary endpoints, intraoperative changes of base excess –2.59 ± 2.25 (median: –2.65) mmol/L (balanced group) and –4.79 ± 2.38 (median: –4.70) mmol/L (non-balanced group)) or serum chloride 2.4 ± 1.9 (median: 3.0) mmol/L and 5.2 ± 3.1 (median: 5.0) mmol/L were significantly different (p = 0.0117 and p = 0.0045, respectively). In both groups (each n = 20) the investigational product administration in terms of volume and infusion rate was comparable throughout the course of the study, i.e. before, during and after surgery.
Discussion: Balanced gelatine solution 4% combined with a balanced electrolyte solution demonstrated significant smaller impact on blood gas analytic parameters in the primary endpoints BE and serum chloride when compared to a non-balanced gelatine solution 4% combined with NaCl 0.9%. No marked treatment differences were observed with respect to haemodynamics, coagulation and renal function.
Trial registration: ClinicalTrials.gov (NCT01515397) and clinicaltrialsregister.eu, EudraCT number 2010-018524-58.
Background & aims: Recent studies indicate that vitamin D deficiency is associated with increased morbidity and mortality in critically ill patients. Knowledge about the functional role and clinical relevance of vitamin D for patients undergoing cardiac surgery is sparse. Therefore, we investigated the clinical significance of vitamin D levels on outcome of cardiac surgery patients.
Methods: 92 patients undergoing elective cardiac surgery with cardiopulmonary arrest were included in this prospective observational pilot study. 25-hydroxyvitamin D (25OHD) and 1,25-dihydroxyvitamin D (1,25(OH)2D) levels were measured prior to surgery, immediately postoperatively as well as 6, 12 and 24 h after surgery. We assessed postoperative organ dysfunctions, infections and death until hospital discharge.
Results: The serum concentration of 1,25(OH)2D significantly decreased intraoperatively by 29.3% (p < 0.001) and was significantly lower at any postoperative time point compared to baseline values, whereas 25OHD levels did not show significant changes during the observation period. Coronary artery bypass graft (CABG) patients had significant higher baseline 1,25(OH)2D values than patients with valve surgery (39.7 ± 13.9 ng/l vs. 30.1 ± 14.1 ng/l, p = 0.010) or CABG + valve surgery (39.7 ± 13.9 ng/l vs. 32.6 ± 11.8 ng/l, p = 0.044).
Our data showed a significant odds ratio to develop postoperative organ dysfunction (OR 0.95; p = 0.009) and PCT levels ≥5 μg/l (OR 0.94; p = 0.046) for every ng/l increment in 1,25(OH)2D, when performing multivariable analysis and after adjusting for preoperative illness and demographics. In addition, multivariable-adjusted statistical analyses revealed that patients stayed significantly shorter on ICU (−0.21 h; p = 0.001) and in hospital (−2.6 days; p = 0.009) for every ng/l increment in 1,25(OH)2D.
Conclusion: Our data highlight important evidence about the clinical significance of 1,25(OH)2D levels in cardiac surgery patients. Higher levels were associated with significantly less postoperative organ dysfunctions, elevated PCT levels, death and prolonged hospital stay. 1,25(OH)2D levels decreased significantly intra- and postoperatively, while serum levels of 25OHD did not.
Trial registration: clinicaltrials.gov (NCT 02488876), registered May 1, 2015.
Introduction: Acute kidney injury (AKI) can evolve quickly and clinical measures of function often fail to detect AKI at a time when interventions are likely to provide benefit. Identifying early markers of kidney damage has been difficult due to the complex nature of human AKI, in which multiple etiologies exist. The objective of this study was to identify and validate novel biomarkers of AKI.
Methods: We performed two multicenter observational studies in critically ill patients at risk for AKI - discovery and validation. The top two markers from discovery were validated in a second study (Sapphire) and compared to a number of previously described biomarkers. In the discovery phase, we enrolled 522 adults in three distinct cohorts including patients with sepsis, shock, major surgery, and trauma and examined over 300 markers. In the Sapphire validation study, we enrolled 744 adult subjects with critical illness and without evidence of AKI at enrollment; the final analysis cohort was a heterogeneous sample of 728 critically ill patients. The primary endpoint was moderate to severe AKI (KDIGO stage 2 to 3) within 12 hours of sample collection.
Results: Moderate to severe AKI occurred in 14% of Sapphire subjects. The two top biomarkers from discovery were validated. Urine insulin-like growth factor-binding protein 7 (IGFBP7) and tissue inhibitor of metalloproteinases-2 (TIMP-2), both inducers of G1 cell cycle arrest, a key mechanism implicated in AKI, together demonstrated an AUC of 0.80 (0.76 and 0.79 alone). Urine [TIMP-2].[IGFBP7] was significantly superior to all previously described markers of AKI (P <0.002), none of which achieved an AUC >0.72. Furthermore, [TIMP-2].[IGFBP7] significantly improved risk stratification when added to a nine-variable clinical model when analyzed using Cox proportional hazards model, generalized estimating equation, integrated discrimination improvement or net reclassification improvement. Finally, in sensitivity analyses [TIMP-2].[IGFBP7] remained significant and superior to all other markers regardless of changes in reference creatinine method.
Conclusions: Two novel markers for AKI have been identified and validated in independent multicenter cohorts. Both markers are superior to existing markers, provide additional information over clinical variables and add mechanistic insight into AKI. Trial registration: ClinicalTrials.gov number NCT01209169.
Macrophages exert the primary cellular immune response. Pathogen components like bacterial lipopolysaccharides (LPS) stimulate macrophage migration, phagocytotic activity and cytokine expression. Previously, we identified the poly(A)+ RNA interactome of RAW 264.7 macrophages. Of the 402 RNA-binding proteins (RBPs), 32 were classified as unique in macrophages, including nineteen not reported to interact with nucleic acids before. Remarkably, P23 a HSP90 co-chaperone, also known as cytosolic prostaglandin E2 synthase (PTGES3), exhibited differential poly(A)+ RNA binding in untreated and LPS-induced macrophages. To identify mRNAs bound by P23 and to elucidate potential regulatory RBP functions in macrophages, we immunoprecipitated P23 from cytoplasmic extracts of cross-linked untreated and LPS-induced cells. RNAseq revealed that enrichment of 44 mRNAs was reduced in response to LPS. Kif15 mRNA, which encodes kinesin family member 15 (KIF15), a motor protein implicated in cytoskeletal reorganization and cell mobility was selected for further analysis. Noteworthy, phagocytic activity of LPS-induced macrophages was enhanced by P23 depletion. Specifically, in untreated RAW 264.7 macrophages, decreased P23 results in Kif15 mRNA destabilization, diminished KIF15 expression and accelerated macrophage migration. We show that the unexpected RBP function of P23 contributes to the regulation of macrophage phagocytotic activity and migration.
Background: Peritonitis is responsible for thousands of deaths annually in Germany alone. Even source control (SC) and antibiotic treatment often fail to prevent severe sepsis or septic shock, and this situation has hardly improved in the past two decades. Most experimental immunomodulatory therapeutics for sepsis have been aimed at blocking or dampening a specific pro-inflammatory immunological mediator. However, the patient collective is large and heterogeneous. There are therefore grounds for investigating the possibility of developing personalized therapies by classifying patients into groups according to biomarkers. This study aims to combine an assessment of the efficacy of treatment with a preparation of human immunoglobulins G, A, and M (IgGAM) with individual status of various biomarkers (immunoglobulin level, procalcitonin, interleukin 6, antigen D-related human leucocyte antigen (HLA-DR), transcription factor NF-κB1, adrenomedullin, and pathogen spectrum).
Methods/design: A total of 200 patients with sepsis or septic shock will receive standard-of-care treatment (SoC). Of these, 133 patients (selected by 1:2 randomization) will in addition receive infusions of IgGAM for 5 days. All patients will be followed for approximately 90 days and assessed by the multiple-organ failure (MOF) score, by the EQ QLQ 5D quality-of-life scale, and by measurement of vital signs, biomarkers (as above), and survival.
Discussion: This study is intended to provide further information on the efficacy and safety of treatment with IgGAM and to offer the possibility of correlating these with the biomarkers to be studied. Specifically, it will test (at a descriptive level) the hypothesis that patients receiving IgGAM who have higher inflammation status (IL-6) and poorer immune status (low HLA-DR, low immunoglobulin levels) have a better outcome than patients who do not receive IgGAM. It is expected to provide information that will help to close the knowledge gap concerning the association between the effect of IgGAM and the presence of various biomarkers, thus possibly opening the way to a personalized medicine.
Trial registration: EudraCT, 2016–001788-34; ClinicalTrials.gov, NCT03334006. Registered on 17 Nov 2017.
Trial sponsor: RWTH Aachen University, represented by the Center for Translational & Clinical Research Aachen (contact Dr. S. Isfort).
Background: Intensive Care Resources are heavily utilized during the COVID-19 pandemic. However, risk stratification and prediction of SARS-CoV-2 patient clinical outcomes upon ICU admission remain inadequate. This study aimed to develop a machine learning model, based on retrospective & prospective clinical data, to stratify patient risk and predict ICU survival and outcomes. Methods: A Germany-wide electronic registry was established to pseudonymously collect admission, therapeutic and discharge information of SARS-CoV-2 ICU patients retrospectively and prospectively. Machine learning approaches were evaluated for the accuracy and interpretability of predictions. The Explainable Boosting Machine approach was selected as the most suitable method. Individual, non-linear shape functions for predictive parameters and parameter interactions are reported. Results: 1039 patients were included in the Explainable Boosting Machine model, 596 patients retrospectively collected, and 443 patients prospectively collected. The model for prediction of general ICU outcome was shown to be more reliable to predict “survival”. Age, inflammatory and thrombotic activity, and severity of ARDS at ICU admission were shown to be predictive of ICU survival. Patients’ age, pulmonary dysfunction and transfer from an external institution were predictors for ECMO therapy. The interaction of patient age with D-dimer levels on admission and creatinine levels with SOFA score without GCS were predictors for renal replacement therapy. Conclusions: Using Explainable Boosting Machine analysis, we confirmed and weighed previously reported and identified novel predictors for outcome in critically ill COVID-19 patients. Using this strategy, predictive modeling of COVID-19 ICU patient outcomes can be performed overcoming the limitations of linear regression models. Trial registration “ClinicalTrials” (clinicaltrials.gov) under NCT04455451.