Refine
Document Type
- Article (2)
Language
- English (2)
Has Fulltext
- yes (2)
Is part of the Bibliography
- no (2)
Keywords
Institute
We present a simultaneous calculation of heavy single-Λ hypernuclei and compact stars containing hypernuclear core within a relativistic density functional theory based on a Lagrangian which includes the hyperon octet and lightest isoscalar-isovector mesons which couple to baryons with density-dependent couplings. The corresponding density functional allows for SU(6) symmetry breaking and mixing in the isoscalar sector, whereby the departures in the σ–Λ and σ–Σ couplings away from their values implied by the SU(3) symmetric model are used to adjust the theory to the laboratory and astronomical data. We fix σ–Λ coupling using the data on the single-Λ hypernuclei and derive an upper bound on the σ–Σ from the requirement that the lower bound on the maximum mass of a compact star is 2M⊙.
We investigate the modification of the pion self-energy at finite temperature due to its interaction with a low-density, isospin-symmetric nuclear medium embedded in a constant magnetic background. To one loop, for fixed temperature and density, we find that the pion effective mass increases with the magnetic field. For the π−, interestingly, this happens solely due to the trivial Landau quantization shift ∼|eB|, since the real part of the self-energy is negative in this case. In a scenario in which other charged particle species are present and undergo an analogous trivial shift, the relevant behavior of the effective mass might be determined essentially by the real part of the self-energy. In this case, we find that the pion mass decreases by ∼10% for a magnetic field |eB|∼mπ2, which favors pion condensation at high density and low temperatures.