Refine
Document Type
- Preprint (3)
Language
- English (3)
Has Fulltext
- yes (3)
Is part of the Bibliography
- no (3)
Keywords
- (QGP) (1)
- QCD medium (1)
- charm and bottom Produktion (1)
- charm and bottom production (1)
- color current (1)
- gluon (1)
- quark (1)
- quark gluon Plasma (1)
- quark gluon plasma (1)
- quark-gluon plasma (1)
Institute
- Physik (3)
We study b¯b and c¯c production and the influence of nuclear shadowing at LHC and RHIC energies. We find a significant reduction in the production cross section of both charm and bottom at RHIC and LHC. Bound states such as and J/psi are suppressed by this reduction in the charm production cross sections. Therefore, J/psi suppression may not be useful as a signature for the quark gluon plasma. PACS: 12.38.Mh, 25.75.-q, 24.85.+p, 14.65.Dw
A medium modified gluon propagator is used to evaluate the scattering cross section for the process gg - gg in the QCD medium by performing an ex- plicit sum over the polarizations of the gluons. We incorporate a magnetic sreening mass from a non - perturbative study. It is shown that the medium modified cross section is finite, divergence free, and is independent of any ad-hoc momentum transfer cut-off parameters. The medium modified finite cross sections are necessary for a realistic investigation of the production and equilibration of the minijet plasma expected at RHIC and LHC PACS: 12.38.Mh; 14.70.Dj; 12.38.Bx; 11.10.Wx
By using the background field method of QCD in a path integral approach, we derive the equation of motion for the classical chromofield and for the gluon in a system containing the gluon and the classical chromofield simul- taneously. This inhomogeneous field equation contains a current term, which is the expectation value of a composite operator including linear, square and cubic terms of the gluon field. We also derive identities which the current should obey from the gauge invariance. We calculate the current at the leading order where the current induced by the gluon is opposite in sign to that induced by the quark. This is just the feature of the non-Abelian gauge field theory which has asymptotic freedom. Physically, the induced current can be treated as the displacement current in the polarized vacuum, and its e ect is equivalent to redefining the field and the coupling constant. PACS: 12.38.-t,12.38.Aw,11.15.-q,12.38.Mh