Refine
Document Type
- Article (11)
- Preprint (2)
- Doctoral Thesis (1)
- Master's Thesis (1)
Has Fulltext
- yes (15)
Is part of the Bibliography
- no (15)
Keywords
Institute
- Physik (15)
- Sportwissenschaften (1)
Im Rahmen dieser Arbeit wurde ein Reaktionsmikroskop (REMI) nach dem Messprinzip COLTRIMS (Cold Target Recoil Ion Momentum Spectrometry) neu konstruiert und aufgebaut. Die Leistungsfähigkeit des Experimentaufbaus konnte sowohl in diversen Testreihen als auch anschließend unter realen Messbedingungen an der Synchrotronstrahlungsanlage SOLEIL und am endgültigen Bestimmungsort SQS-Instrument (Small Quantum Systems) des Freie-Elektronen-Lasers European XFEL (X-ray free-electron laser) eindrucksvoll unter Beweis gestellt werden.
Mit der Experimentiertechnik COLTRIMS ist es möglich, alle geladenen Fragmente einer Wechselwirkung eines Projektilteilchens mit einem Targetteilchen mittels zweier orts- und zeitauflösender Detektoren nachzuweisen. In einem Vakuumrezipienten wird die als Molekularstrahl präparierte Targetsubstanz inmitten der Hauptkammer zentral mit einem Projektilstrahl (z.B. des XFEL) zum Überlapp gebracht, sodass dort eine Wechselwirkung stattfinden kann. Bei den entstehenden Fragmenten handelt es sich um positiv geladene Ionen sowie negative geladene Elektronen. Elektrische Felder, erzeugt durch eine Spektrometer-Einheit, sowie durch Helmholtz-Spulen erzeugte magnetische Felder ermöglichen es, die geladenen Fragmente in Richtung der Detektoren zu lenken. Die Orts- und Zeitmessung eines einzelnen Teilchens (z.B. eines Ions) findet in Koinzidenz mit den anderen Teilchen (z.B. weiteren Ionen bzw. Elektronen) statt. Mit dieser Messmethode können die Impulsvektoren und Ladungszustände aller geladenen Fragmente in Koinzidenz gemessen werden. Da hierbei die geometrische Anordnung der einzelnen Komponenten für die Leistungsfähigkeit des Experiments eine entscheidende Rolle spielt, mussten bei der Neukonstruktion des COLTRIMS-Apparates für den Einsatz an einem Freie-Elektronen-Laser (FEL) einige Rahmenbedingungen erfüllt werden. Besonders wurden die hohen Vakuumvoraussetzungen an den Experimentaufbau aufgrund der enormen Lichtintensität eines FEL beachtet. Das Zusammenspiel der vielen Einzelkomponenten konnte zunächst in mehreren Testreihen überprüft werden. Unter anderem durch Variation der Vakuumbauteile in Material und Beschaffenheit konnten die zuvor ermittelten Vorgaben schließlich erreicht werden. Das neu konstruierte Target-Präparationssystem zur Erzeugung molekularer Gasstrahlen erlaubt nun den Einsatz von bis zu vier unterschiedlich dimensionierten, differentiell gepumpten Stufen. Zudem wurden hochpräzise Piezo-Aktuatoren verbaut, welche die Bewegung von Blenden im Vakuum erlauben, wodurch eine variable Einstellung des lokalen Targetdrucks ermöglicht wird. Die Anpassung der elektrischen Felder des Spektrometers für ein jeweiliges Experiment wurde mittels Simulationen der Teilchentrajektorien, Teilchenflugzeiten sowie der Detektorauflösung durchgeführt.
Da die in dieser Arbeit besprochenen Messungen und Ergebnisse die Wechselwirkungsprozesse von Röntgenstrahlung bzw. Synchrotronstrahlung mit Materie thematisieren, wird die Erzeugung von Synchrotronstrahlung sowohl in Kreisbeschleunigern als auch in den modernen Freie-Elektronen-Lasern (FEL) erklärt und hergeleitet. Der im Röntgenbereich arbeitende Freie-Elektronen-Laser European XFEL, welcher u.A. als Strahlungsquelle für die hier gezeigten Experimente diente, ist eine von derzeit noch wenigen Anlagen ihrer Art weltweit. Seine Lichtintensität in diesem Wellenlängenbereich liegt bis zu acht Größenordnungen über den bisher verwendeten Anlagen für Synchrotronstrahlung.
Beim ersten Einsatz der neuen Apparatur an der Synchrotronstrahlungsanlage SOLEIL wurde der ultraschnelle Dissoziationsprozess von Chlormethan (CH3Cl) untersucht. Während des Zerfallsprozesses nach Anregung durch Röntgenstrahlung werden hochenergetische Auger-Elektronen emittiert, welche in Koinzidenz mit verschiedenen Molekülfragmenten nachgewiesen wurden. Durch den Zerfallsmechanismus der ultraschnellen Dissoziation wird die Auger-Elektronenemission nach resonanter Molekülanregung während der Dissoziation des Moleküls beschrieben. Die kinetische Energie des Auger-Elektrons ist dabei abhängig von seinem Emissionszeitpunkt. Somit können die gemessenen Auger-Elektronen ein „Standbild“ der zeitlichen Abfolge des Dissoziationsprozesses liefern.
Es wird eine detaillierte Beschreibung der Datenanalyse vorgenommen, welche aus Kalibrationsmessungen und einer Interpretation der Messdaten besteht. Die abschließende Betrachtung besteht in der Darstellung der Elektronenemissionswinkelverteilungen im molekülfesten Koordinatensystem. Die Winkelverteilung der Auger-Elektronen wird am Anfang der Dissoziation vom umgebenden Molekül- potential beeinflusst und zeigt deutliche Strukturen entlang der Bindungsachse. Entfernen sich die Bindungspartner voneinander und das Auger-Elektron wird währenddessen emittiert, so verschwinden diese Strukturen zunehmend und eine Vorzugsemissionsrichtung senkrecht zur Molekülachse wird sichtbar.
Die Analyse der Messdaten zur Untersuchung von Multiphotonen-Ionisation an Sauerstoff-Molekülen am Freie-Elektronen-Laser European XFEL ermöglichte unter anderem die Beobachtung „hohler Moleküle“, also Systemen mit Doppelinnerschalen- Vakanzen. Solche Zustände können vor allem durch die sequentielle Absorption zweier Photonen entstehen, wobei die hierbei nötige Photonendichte nur von FEL- Anlagen bereit gestellt werden kann. Hier konnte das Ziel erreicht werden, erstmalig die Emissionswinkelverteilungen der Photoelektronen von mehrfach ionisierten Sauerstoff-Molekülen (O+/O3+-Aufbruchskanal) als Folge der ablaufenden Mechanismen femtosekundengenau zu beobachten. Hierzu wurde ein vereinfachtes Schema der verschiedenen Zerfallsschritte erstellt und schließlich ermittelt, dass der Zerfall durch eine PAPA-Sequenz beschrieben werden kann. Bei dieser handelt es sich um die zweimalige Abfolge von Photoionisation und Auger-Zerfall. Somit werden vier positive Ladungen im Molekül erzeugt. Das zweite Photon des XFEL wird dabei während der Dissoziation der sich Coulomb-abstoßenden Fragmente absorbiert, weshalb es sich um einen zweistufigen Prozess aus Anrege- und Abfrage- Schritt (Pump-Probe) handelt. Schlussendlich gelang zudem der Nachweis von Doppelinnerschalen-Vakanzen im Sauerstoff-Molekül nach Selektion des O2+/O2+- Aufbruchkanals. Hierfür konnten die beiden Möglichkeiten einer zweiseitigen oder einseitigen Doppelinnerschalen-Vakanz getrennt betrachtet werden und ebenfalls erstmalig das Verhalten der Elektronenemission dieser beiden Zustände verglichen werden.
Hauptbestandteil dieser Masterarbeit war es, ein neues COLTRIMS Experiment zu entwerfen und zu bauen. Den gesamten Aufbau mit allen dazugehörigen Komponenten wie verschiedensten Vakuumkomponenten sowie Detektoren und Elektronik unter realen Messbedingungen zu testen, bildete schließlich den Abschluss des praktischen Teils. Sowohl einige Kalibrationsmessungen mit dem neuen Aufbau, als auch die ersten Ergebnisse der Messungen mit der chiralen Substanz Bromchlorfluormethan wurden hier vorgestellt.
Ein Großteil der Projektarbeit bestand darin, Überlegungen für die vielen verschiedenen Bauteile anzustellen, diese mit Rücksprache erfahrener Gruppenmitglieder zu verbessern und schließlich zu konstruieren und zu zeichnen...
Real-time observation of X-ray-induced intramolecular and interatomic electronic decay in CH2I2
(2019)
The increasing availability of X-ray free-electron lasers (XFELs) has catalyzed the development of single-object structural determination and of structural dynamics tracking in real-time. Disentangling the molecular-level reactions triggered by the interaction with an XFEL pulse is a fundamental step towards developing such applications. Here we report real-time observations of XFEL-induced electronic decay via short-lived transient electronic states in the diiodomethane molecule, using a femtosecond near-infrared probe laser. We determine the lifetimes of the transient states populated during the XFEL-induced Auger cascades and find that multiply charged iodine ions are issued from short-lived (∼20 fs) transient states, whereas the singly charged ones originate from significantly longer-lived states (∼100 fs). We identify the mechanisms behind these different time scales: contrary to the short-lived transient states which relax by molecular Auger decay, the long-lived ones decay by an interatomic Coulombic decay between two iodine atoms, during the molecular fragmentation.
The ultrafast structural dynamics of water following inner-shell ionization is a crucial issue in high-energy radiation chemistry. We have exposed isolated water molecules to a short x-ray pulse from a free-electron laser and detected momenta of all produced ions in coincidence. By combining experimental results and theoretical modeling, we can image dissociation dynamics of individual molecules in unprecedented detail. We reveal significant molecular structural dynamics in H2O2+, such as asymmetric deformation and bond-angle opening, leading to two-body or three-body fragmentation on a timescale of a few femtoseconds. We thus reconstruct several snapshots of structural dynamics at different time intervals, which highlight dynamical patterns that are relevant as initiating steps of subsequent radiation-damage processes.
Following structural dynamics in real time is a fundamental goal towards a better understanding of chemical reactions. Recording snapshots of individual molecules with ultrashort exposure times is a key ingredient towards this goal, as atoms move on femtosecond (10−15 s) timescales. For condensed-phase samples, ultrafast, atomically resolved structure determination has been demonstrated using X-ray and electron diffraction. Pioneering experiments have also started addressing gaseous samples. However, they face the problem of low target densities, low scattering cross sections and random spatial orientation of the molecules. Therefore, obtaining images of entire, isolated molecules capturing all constituents, including hydrogen atoms, remains challenging. Here we demonstrate that intense femtosecond pulses from an X-ray free-electron laser trigger rapid and complete Coulomb explosions of 2-iodopyridine and 2-iodopyrazine molecules. We obtain intriguingly clear momentum images depicting ten or eleven atoms, including all the hydrogens, and thus overcome a so-far impregnable barrier for complete Coulomb explosion imaging—its limitation on molecules consisting of three to five atoms. In combination with state-of-the-art multi-coincidence techniques and elaborate theoretical modelling, this allows tracing ultrafast hydrogen emission and obtaining information on the result of intramolecular electron rearrangement. Our work represents an important step towards imaging femtosecond chemistry via Coulomb explosion.
A central motivation for the development of x-ray free-electron lasers has been the prospect of time-resolved single-molecule imaging with atomic resolution. Here, we show that x-ray photoelectron diffraction—where a photoelectron emitted after x-ray absorption illuminates the molecular structure from within—can be used to image the increase of the internuclear distance during the x-ray-induced fragmentation of an O2 molecule. By measuring the molecular-frame photoelectron emission patterns for a two-photon sequential K-shell ionization in coincidence with the fragment ions, and by sorting the data as a function of the measured kinetic energy release, we can resolve the elongation of the molecular bond by approximately 1.2 a.u. within the duration of the x-ray pulse. The experiment paves the road toward time-resolved pump-probe photoelectron diffraction imaging at high-repetition-rate x-ray free-electron lasers.
The photoelectron circular dichroism (PECD) of the O 1s-photoelectrons of trifluoromethyloxirane (TFMOx) is studied experimentally and theoretically for different photoelectron kinetic energies. The experiments were performed employing circularly polarized synchrotron radiation and coincident electron and fragment ion detection using cold target recoil ion momentum spectroscopy. The corresponding calculations were performed by means of the single center method within the relaxed-core Hartree–Fock approximation. We concentrate on the energy dependence of the differential PECD of uniaxially oriented TFMOx molecules, which is accessible through the employed coincident detection. We also compare the results for the differential PECD of TFMOx to those obtained for the equivalent fragmentation channel and similar photoelectron kinetic energy of methyloxirane (MOx), studied in our previous work. Thereby, we investigate the influence of the substitution of the methyl group by the trifluoromethyl group at the chiral center on the molecular chiral response. Finally, the presently obtained angular distribution parameters are compared to those available in the literature.
Ultrashort x-ray pulses from free-electron lasers can efficiently charge up and trigger the full fragmentation of molecules. By coincident detection of up to five ions resulting from rapid Coulomb explosion of highly charged iodomethane, we show that the full three-dimensional equilibrium geometry of this prototypical polyatomic system can be determined from the measured ion momenta with the help of a charge buildup model. Supported by simulations of how the ion momenta would reflect specific changes in molecular bond lengths and angles, we demonstrate that Coulomb-explosion imaging with ultrashort x-ray pulses is a promising technique for recording movies of multidimensional nuclear wave packets, including hydrogen motions.
The photoelectron circular dichroism (PECD) of the O 1s-photoelectrons of trifluoromethyloxirane(TFMOx) is studied experimentally and theoretically for different photoelectron kinetic energies. The experiments were performed employing circularly polarized synchrotron radiation and coincidentelectron and fragment ion detection using Cold Target Recoil Ion Momentum Spectroscopy. The corresponding calculations were performed by means of the Single Center method within the relaxed-core Hartree-Fock approximation. We concentrate on the energy dependence of the differential PECD of uniaxially oriented TFMOx molecules, which is accessible through the employed coincident detection. We also compare results for differential PECD of TFMOx to those obtained for the equivalent fragmentation channel and similar photoelectron kinetic energy of methyloxirane (MOx), studied in our previous work. Thereby, we investigate the influence of the substitution of the methyl-group by the trifluoromethyl-group at the chiral center on the molecular chiral response. Finally, the presently obtained angular distribution parameters are compared to those available in literature.
During the last decade, X-ray free-electron lasers (XFELs) have enabled the study of light-matter interaction under extreme conditions. Atoms which are subject to XFEL radiation are charged by a complex interplay of (several subsequent) photoionization events and electronic decay processes within a few femtoseconds. The interaction with molecules is even more intriguing, since intricate nuclear dynamics occur as the molecules start to dissociate during the charge-up process. Here, we demonstrate that by analyzing photoelectron angular emission distributions and kinetic energy release of charge states of ionic molecular fragments, we can obtain a detailed understanding of the charge-up and fragmentation dynamics. Our novel approach allows for gathering such information without the need of complex ab initio modeling. As an example, we provide a detailed view on the processes happening on a femtosecond time scale in oxygen molecules exposed to intense XFEL pulses.