Refine
Year of publication
Language
- English (596)
Has Fulltext
- yes (596)
Is part of the Bibliography
- no (596)
Keywords
- BESIII (19)
- e +-e − Experiments (19)
- Branching fraction (14)
- Particle and Resonance Production (9)
- Charm Physics (7)
- Spectroscopy (6)
- Hadronic decays (5)
- Quarkonium (5)
- Branching fractions (4)
- Charmonium (4)
Institute
- Physik (594)
- Frankfurt Institute for Advanced Studies (FIAS) (1)
- Informatik (1)
Using 2.93 fb−1 of 𝑒+𝑒− collision data taken at a center-of-mass energy of 3.773 GeV with the BESIII detector, we report the first measurements of the absolute branching fractions of 14 hadronic 𝐷0(+) decays to exclusive final states with an 𝜂, e.g., 𝐷0→𝐾−𝜋+𝜂, 𝐾0𝑆𝜋0𝜂, 𝐾+𝐾−𝜂, 𝐾0𝑆𝐾0𝑆𝜂, 𝐾−𝜋+𝜋0𝜂, 𝐾0𝑆𝜋+𝜋−𝜂, 𝐾0𝑆𝜋0𝜋0𝜂, and 𝜋+𝜋−𝜋0𝜂; 𝐷+→𝐾0𝑆𝜋+𝜂, 𝐾0𝑆𝐾+𝜂, 𝐾−𝜋+𝜋+𝜂, 𝐾0𝑆𝜋+𝜋0𝜂, 𝜋+𝜋+𝜋−𝜂, and 𝜋+𝜋0𝜋0𝜂. Among these decays, the 𝐷0→𝐾−𝜋+𝜂 and 𝐷+→𝐾0 𝑆𝜋+𝜂 decays have the largest branching fractions, which are ℬ(𝐷0→𝐾−𝜋+𝜂) = (1.853±0.025stat±0.031syst)% and ℬ(𝐷+→𝐾0𝑆𝜋+𝜂) = (1.309±0.037stat±0.031syst)%, respectively. The charge-parity asymmetries for the six decays with highest event yields are determined, and no statistically significant charge-parity violation is found.
Using 2.93 fb−1 of 𝑒+𝑒− collision data taken at a center-of-mass energy of 3.773 GeV by the BESIII detector at the BEPCII, we measure the branching fractions of the singly Cabibbo-suppressed decays 𝐷→𝜔𝜋𝜋 to be ℬ(𝐷0→𝜔𝜋+𝜋−)=(1.33±0.16±0.12)×10−3 and ℬ(𝐷+→𝜔𝜋+𝜋0)=(3.87±0.83±0.25)×10−3, where the first uncertainties are statistical and the second ones systematic. The statistical significances are 12.9𝜎 and 7.7𝜎, respectively. The precision of ℬ(𝐷0→𝜔𝜋+𝜋−) is improved by a factor of 2.1 over prior measurements, and ℬ(𝐷+→𝜔𝜋+𝜋0) is measured for the first time. No significant signal for 𝐷0→𝜔𝜋0𝜋0 is observed, and the upper limit on the branching fraction is ℬ(𝐷0→𝜔𝜋0𝜋0)<1.10×10−3 at the 90% confidence level. The branching fractions of 𝐷→𝜂𝜋𝜋 are also measured and consistent with existing results.
Using (2712.4±14.3)×106 ψ(3686) events collected with the BESIII detector operating at the BEPCII collider, we search for the hadronic transition hc→π+π−J/ψ via ψ(3686)→π0hc. No significant signal is observed. We set the most stringent upper limits to date on the branching fractions B(ψ(3686)→π0hc)×B(hc→π+π−J/ψ) and B(hc→π+π−J/ψ) at the 90% confidence level, which are determined to be 6.7×10−7 and 9.4×10−4, respectively.
There has recently been a dramatic renewal of interest in hadron spectroscopy and charm physics. This renaissance has been driven in part by the discovery of a plethora of charmonium-like XYZ states at BESIII and B factories, and the observation of an intriguing proton-antiproton threshold enhancement and the possibly related X(1835) meson state at BESIII, as well as the threshold measurements of charm mesons and charm baryons.
We present a detailed survey of the important topics in tau-charm physics and hadron physics that can be further explored at BESIII during the remaining operation period of BEPCII. This survey will help in the optimization of the data-taking plan over the coming years, and provides physics motivation for the possible upgrade of BEPCII to higher luminosity.
We report new measurements of the cross sections for the production of Dbar D final states at the ψ(3770) resonance. Our data sample consists of an integrated luminosity of 2.93 fb−1 of e+e− annihilation data produced by the BEPCII collider and collected and analyzed with the BESIII detector. We exclusively reconstruct three D0 and six D+ hadronic decay modes and use the ratio of the yield of fully reconstructed Dbar D events ("double tags") to the yield of all reconstructed D or bar D mesons ("single tags") to determine the number of D0bar D0 and D+D− events, benefiting from the cancellation of many systematic uncertainties. Combining these yields with an independent determination of the integrated luminosity of the data sample, we find the cross sections to be σ(e+e− → D0bar D0) nb and σ(e+e− → D+D−) = (2.830 ± 0.011 ± 0.026) nb, where the uncertainties are statistical and systematic, respectively.
Using a 3.19 fb−1 data sample collected at an 𝑒+𝑒− center-of-mass energy of 𝐸cm=4.178 GeV with the BESIII detector, we measure the branching fraction of the leptonic decay 𝐷+𝑠→𝜇+𝜈𝜇 to be ℬ𝐷+𝑠→𝜇+𝜈𝜇=(5.49±0.16stat±0.15syst)×10−3. Combining our branching fraction with the masses of the 𝐷+𝑠 and 𝜇+ and the lifetime of the 𝐷+𝑠, we determine 𝑓𝐷+𝑠|𝑉𝑐𝑠|=246.2±3.6stat±3.5syst MeV. Using the 𝑐→𝑠 quark mixing matrix element |𝑉𝑐𝑠| determined from a global standard model fit, we evaluate the 𝐷+𝑠 decay constant 𝑓𝐷+𝑠=252.9±3.7stat±3.6syst MeV. Alternatively, using the value of 𝑓𝐷+𝑠 calculated by lattice quantum chromodynamics, we find |𝑉𝑐𝑠|=0.985±0.014stat±0.014syst. These values of ℬ𝐷+𝑠→𝜇+𝜈𝜇, 𝑓𝐷+𝑠|𝑉𝑐𝑠|, 𝑓𝐷+𝑠 and |𝑉𝑐𝑠| are each the most precise results to date.
We study the electromagnetic Dalitz decay 𝐽/𝜓→𝑒+𝑒−𝜂 and search for dielectron decays of a dark gauge boson (𝛾′) in 𝐽/𝜓→𝛾′𝜂 with the two 𝜂 decay modes 𝜂→𝛾𝛾 and 𝜂→𝜋+𝜋−𝜋0 using (1310.6±7.0)×106 𝐽/𝜓 events collected with the BESIII detector. The branching fraction of 𝐽/𝜓→𝑒+𝑒−𝜂 is measured to be (1.43±0.04(stat)±0.06(syst))×10−5, with a precision that is improved by a factor of 1.5 over the previous BESIII measurement. The corresponding dielectron invariant mass dependent modulus square of the transition form factor is explored for the first time, and the pole mass is determined to be Λ=2.84±0.11(stat)±0.08(syst) GeV/𝑐2. We find no evidence of 𝛾′ production and set 90% confidence level upper limits on the product branching fraction ℬ(𝐽/𝜓→𝛾′𝜂)×ℬ(𝛾′→𝑒+𝑒−) as well as the kinetic mixing strength between the standard model photon and 𝛾′ in the mass range of 0.01≤𝑚𝛾′≤2.4 GeV/𝑐2.
Using data samples collected by the BESIII detector operating at the BEPCII storage ring, we measure the e+e−→K0SK±π∓ Born cross sections at center-of-mass energies between 3.8 and 4.6\,GeV, corresponding to a luminosity of about 5.0~fb−1. The results are compatible with the BABAR measurements, but with the precision significantly improved. A simple 1/sn dependence for the continuum process can describe the measured cross sections, but a better fit is obtained by an additional resonance near 4.2\,GeV, which could be an excited charmonium or a charmonium-like state.
An amplitude analysis of the 𝐾𝑆𝐾𝑆 system produced in radiative 𝐽/𝜓 decays is performed using the (1310.6±7.0)×106 𝐽/𝜓 decays collected by the BESIII detector. Two approaches are presented. A mass-dependent analysis is performed by parametrizing the 𝐾𝑆𝐾𝑆 invariant mass spectrum as a sum of Breit-Wigner line shapes. Additionally, a mass-independent analysis is performed to extract a piecewise function that describes the dynamics of the 𝐾𝑆𝐾𝑆 system while making minimal assumptions about the properties and number of poles in the amplitude. The dominant amplitudes in the mass-dependent analysis include the 𝑓0(1710), 𝑓0(2200), and 𝑓′2(1525). The mass-independent results, which are made available as input for further studies, are consistent with those of the mass-dependent analysis and are useful for a systematic study of hadronic interactions. The branching fraction of radiative 𝐽/𝜓 decays to 𝐾𝑆𝐾𝑆 is measured to be (8.1±0.4)×10−4, where the uncertainty is systematic and the statistical uncertainty is negligible.